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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Gaussian Graphical Models with Additional
Restrictions; structure identification.

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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Fundamental properties

For random variables X , Y , Z , and W it holds

(C1) If X ?? Y |Z then Y ?? X |Z ;
(C2) If X ?? Y |Z and U = g(Y ), then X ?? U |Z ;
(C3) If X ?? Y |Z and U = g(Y ), then

X ?? Y | (Z ,U);

(C4) If X ?? Y |Z and X ?? W | (Y ,Z ), then
X ?? (Y ,W ) |Z ;

If density w.r.t. product measure f (x , y , z ,w) > 0 also

(C5) If X ?? Y | (Z ,W ) and X ?? Z | (Y ,W ) then
X ?? (Y ,Z ) |W .
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Semi-graphoid
An independence model (Studený, 2005) ?� is a ternary
relation over subsets of a finite set V . It is a graphoid if for
all disjoint subsets A, B , C , D:

(S1) if A?� B |C then B ?� A |C (symmetry);
(S2) if A?� (B [ D) |C then A?� B |C and

A?� D |C (decomposition);
(S3) if A?� (B [ D) |C then A?� B | (C [ D)

(weak union);
(S4) if A?� B |C and A?� D | (B [ C ), then

A?� (B [ D) |C (contraction);
(S5) if A?� B | (C [ D) and A?� C | (B [ D) then

A?� (B [ C ) |D (intersection).

Semigraphoid if only (S1)–(S4). It is compositional if also

(S6) if A?� B |C and A?� D |C then
A?� (B [ D) |C (composition).
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Separation in undirected graphs

Let G = (V ,E ) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B , S of V , let A?G B | S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S .

Fact: The relation ?G on subsets of V is a compositional
graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such independence model.
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Probabilistic Independence Model

For a system V of labeled random variables X
v

, v 2 V , we
use

A ?? B |C () X
A

?? X
B

|X
C

,

where X
A

= (X
v

, v 2 A) denotes the variables with labels in
A.

The properties (C1)–(C4) imply that ?? satisfies the
semi-graphoid axioms and the graphoid axioms if the joint
density of the variables is strictly positive.

A regular multivariate Gaussian distribution defines a
compositional graphoid independence model, as we shall see
later.
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Markov properties for undirected graphs

G = (V ,E ) simple undirected graph; An independence model
?� satisfies

(P) the pairwise Markov property if

↵ 6⇠ � =) ↵?� � |V \ {↵,�};

(L) the local Markov property if

8↵ 2 V : ↵?� V \ cl(↵) | bd(↵);

(G) the global Markov property if

A?G B | S =) A?� B | S .
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Structural relations among Markov properties

For any semigraphoid it holds that

(G) =) (L) =) (P)

If ?� satisfies graphoid axioms it further holds that

(P) =) (G)

so that in the graphoid case

(G) () (L) () (P).

The latter holds in particular for ??, when f (x) > 0.
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The multivariate Gaussian

A d-dimensional random vector X = (X
1

, . . . ,X
d

) has a
multivariate Gaussian distribution or normal distribution on
Rd if there is a vector ⇠ 2 Rd and a d ⇥ d matrix ⌃ such
that

�>X ⇠ N (�>⇠,�>⌃�) for all � 2 Rd . (1)

We then write X ⇠ N
d

(⇠,⌃). Then

X
i

⇠ N (⇠
i

,�
ii

), Cov(X
i

,X
j

) = �
ij

.

Hence ⇠ is the mean vector and ⌃ the covariance matrix of
the distribution.

A multivariate Gaussian distribution is determined by its
mean vector and covariance matrix.
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Density of multivariate Gaussian

If ⌃ is positive definite, i.e. if �>⌃� > 0 for � 6= 0, the
distribution has density on Rd

f (x | ⇠,⌃) = (2⇡)�d/2(detK )1/2e�(x�⇠)>K(x�⇠)/2, (2)

where K = ⌃�1 is the concentration matrix of the
distribution. Since a positive semidefinite matrix is positive
definite if and only if it is invertible, we then also say that ⌃
is regular.
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Adding two independent Gaussians yields a Gaussian:

If X ⇠ N
d

(⇠
1

,⌃
1

) and X
2

⇠ N
d

(⇠
2

,⌃
2

) and X
1

?? X
2

X
1

+ X
2

⇠ N
d

(⇠
1

+ ⇠
2

,⌃
1

+ ⌃
2

).

A�ne transformations preserve multivariate normality:

If L is an r ⇥ d matrix, b 2 Rr and X ⇠ N
d

(⇠,⌃), then

Y = LX + b ⇠ N
r

(L⇠ + b, L⌃L>).
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Marginal and conditional distributions

Partition X into into X
A

and X
B

, where X
A

2 RA and
X
B

2 RB with A [ B = V . Partition mean vector,
concentration and covariance matrix accordingly as

⇠ =

✓
⇠
A

⇠
B

◆
, K =

✓
K
AA

K
AB

K
BA

K
BB

◆
, ⌃ =

✓
⌃
AA

⌃
AB

⌃
BA

⌃
BB

◆
.

Then, if X ⇠ N (⇠,⌃) it holds that

X
B

⇠ N
s

(⇠
B

,⌃
BB

).

Also
X
A

|X
B

= x
B

⇠ N
A

(⇠
A|B ,⌃A|B).
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Here

⇠
A|B = ⇠

A

+⌃
AB

⌃�1

BB

(x
B

�⇠
B

) and ⌃
A|B = ⌃

AA

�⌃
AB

⌃�1

BB

⌃
BA

.

Using the matrix identities

K�1

AA

= ⌃
AA

� ⌃
AB

⌃�1

BB

⌃
BA

(3)

and
K�1

AA

K
AB

= �⌃
AB

⌃�1

BB

, (4)

it follows that

⇠
A|B = ⇠

A

� K�1

AA

K
AB

(x
B

� ⇠
B

) and K
A|B = K

AA

.

Note that the marginal covariance is simply expressed in
terms of ⌃ whereas the conditional concentration is simply
expressed in terms of K .
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Further, since

⇠
A|B = ⇠

A

� K�1

AA

K
AB

(x
B

� ⇠
B

) and K
A|B = K

AA

,

X
A

and X
B

are independent if and only if K
AB

= 0, giving
K
AB

= 0 if and only if ⌃
AB

= 0.

More generally, if we partition X into X
A

,X
B

,X
C

, the
conditional concentration of X

A[B given X
C

= x
C

is

K
A[B|C =

✓
K
AA

K
AB

K
BA

K
BB

◆
,

so
X
A

?? X
B

|X
C

() K
AB

= 0.

It follows that a Gaussian independence model is a
compositional graphoid.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with a↵� = 0 unless
↵ ⇠ � and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K 2 S+(G) and otherwise unknown.

Note that the density then factorizes as

log f (x) = constant� 1

2

X

↵2V
k↵↵x

2

↵ �
X

{↵,�}2E

k↵�x↵x� ,

hence no interaction terms involve more than pairs..
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Likelihood with restrictions

The likelihood function based on a sample of size n is

L(K ) / (detK )n/2e� tr(Kw)/2,

where w is the (Wishart) matrix of sums of squares and
products and ⌃�1 = K 2 S+(G).
Define the matrices T u, u 2 V [ E as those with elements

T u

ij

=

8
><

>:

1 if u 2 V and i = j = u

1 if u 2 E and u = {i , j}
0 otherwise.

;

then T u, u 2 V [ E forms a basis for the linear space S(G)
of symmetric matrices over V which have zero entries ij
whenever i and j are non-adjacent in G.
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Further, as K 2 S(G), we have

K =
X

v2V
k
v

T v +
X

e2E
k
e

T e (5)

and hence

tr(Kw) =
X

v2V
k
v

tr(T vw) +
X

e2E
k
e

tr(T ew);

leading to the log-likelihood function

l(K ) = log L(K ) ⇠ n

2
log(detK )� tr(Kw)/2

=
n

2
log(detK )

�
X

v2V
k
v

tr(T vw)/2 +
X

e2E
k
e

tr(T ew)/2.
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Hence we can identify the family as a (regular and canonical)
exponential family with � tr(T uW )/2, u 2 V [ E as
canonical su�cient statistics.

The likelihood equations can be obtained from this fact or by
di↵erentiation, combining the fact that

@

@k
u

log det(K ) = tr(T u⌃)

with (5).

This eventually yields the likelihood equations

tr(T uw) = n tr(T u⌃), u 2 V [ E .
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The likelihood equations

tr(T uw) = n tr(T u⌃), u 2 V [ E .

can also be expressed as

n�̂
vv

= w
vv

, n�̂↵� = w↵� , v 2 V , {↵,�} 2 E .

Remember the model restriction K = ⌃�1 2 S+(G).
This ‘fits variances and covariances along nodes and edges in
G’ so we can write the equations as

n⌃̂
cc

= w
cc

for all cliques c 2 C(G).

General theory of exponential families ensure the solution to
be unique, provided it exists.
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Iterative Proportional Scaling

For K 2 S+(G) and c 2 C, define the operation of adjusting
the c-marginal as follows: Let a = V \ c and

M
c

K =

✓
n(w

cc

)�1 + K
ca

(K
aa

)�1K
ac

K
ca

K
ac

K
aa

◆
. (6)

This operation is clearly well defined if w
cc

is positive definite.

Recall the identity

(K
AA

)�1 = ⌃
AA

� ⌃
AB

⌃�1

BB

⌃
BA

.

Switching the role of K and ⌃ yields

⌃
AA

= (K�1)
AA

=
�
K
AA

� K
AB

K�1

BB

K
BA

��1

.
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Hence

⌃
cc

= (K�1)
cc

=
�
K
cc

� K
ca

(K
aa

)�1K
ac

 �1

.

Thus the C -marginal covariance ⌃̃
cc

corresponding to the
adjusted concentration matrix becomes

⌃̃
cc

= {(M
c

K )�1}
cc

=
�
n(w

cc

)�1 + K
ca

(K
aa

)�1K
ac

� K
ca

(K
aa

)�1K
ac

 �1

= w
cc

/n,

hence M
c

K does indeed adjust the marginals.

From (6) it is seen that the pattern of zeros in K is preserved
under the operation M

c

, and it stays positive definite.

In fact, M
c

scales proportionally in the sense that

f {x | (M
c

K )�1} = f (x |K�1)
f (x

c

|w
cc

/n)

f (x
c

|⌃
cc

)
.
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Next we choose any ordering (c
1

, . . . , c
k

) of the cliques in G.
Choose further K

0

= I and define for r = 0, 1, . . .

K
r+1

= (M
c

1

· · ·M
c

k

)K
r

.

Then we have: Consider a sample from a covariance selection
model with graph G. Then

K̂ = lim
r!1

K
r

,

provided the maximum likelihood estimate K̂ of K exists.

This algorithm is also known as Iterative Proportional Scaling
or Iterative Marginal Fitting.
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Factorization
Assume density f w.r.t. product measure on X .
For a ✓ V ,  

a

(x) denotes a function which depends on x
a

only, i.e.
x
a

= y
a

=)  
a

(x) =  
a

(y).

We can then write  
a

(x) =  
a

(x
a

) without ambiguity.

Definition

The distribution of X factorizes w.r.t. G or satisfies (F) if

f (x) =
Y

a2A
 
a

(x)

where A are complete subsets of G.

Complete subsets of a graph are sets with all elements
pairwise neighbours.
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3 6

1 5 7

2 4

s ss s ss s
@@

��

@@

@@@@

�� ��

The cliques of this graph are the maximal complete subsets
{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 5, 6}, {4, 7}, and {5, 6, 7}.
A complete set is any subset of these sets.
The graph above corresponds to a factorization as

f (x) =  
12

(x
1

, x
2

) 
13

(x
1

, x
3

) 
24

(x
2

, x
4

) 
25

(x
2

, x
5

)

⇥  
356

(x
3

, x
5

, x
6

) 
47

(x
4

, x
7

) 
567

(x
5

, x
6

, x
7

).
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Theorem

Let (F) denote the property that f factorizes w.r.t. G and let
(G), (L) and (P) denote Markov properties for ??. It then
holds that

(F) =) (G).

If f is continuous and f (x) > 0 for all x , (P) =) (F).

The former of these is a simple direct consequence of the
factorization whereas the second implication is more subtle.

Thus in the case of positive density (but typically only then),
all the properties coincide:

(F) () (G) () (L) () (P).
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Graph decomposition

Consider an undirected graph G = (V ,E ). A partitioning of
V into a triple (A,B , S) of subsets of V forms a
decomposition of G if

A?G B | S and S is complete.

The decomposition is proper if A 6= ; and B 6= ;.
The components of G are the induced subgraphs G

A[S and
G
B[S .

A graph is prime if no proper decomposition exists.
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Example

3 6

1 5 7

2 4

s ss s ss s
@@

��

@@

@@@@

�� ��
The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}

3 6

1 5 7

2 4

s ss s ss s
@@

��

@@

@@@@

�� ��
3

1 5

2

ss ss
@@

�� @@

��
6

5 7

2 4

ss ss s
@@

@@

��

@@
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Decomposability

Any graph can be recursively decomposed into its maximal
prime subgraphs:

3 6

1 5 7

2 4

s ss s ss s
@@

��

@@

@@@@

�� ��
3

1 5

2

ss ss
@@

�� @@

��

5 7

2 4

s ss s
@@ @@

6

5 7

ss s
@@ ��

A graph is decomposable (or rather fully decomposable) if it
is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
maximal prime subgraphs are cliques.
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Factorization of Markov distributions

Suppose P satisfies (F) w.r.t. G and (A,B , S) is a
decomposition. Then

(i) P
A[S and P

B[S satisfy (F) w.r.t. G
A[S and G

B[S
respectively;

(ii) f (x)f
S

(x
S

) = f
A[S(xA[S)fB[S(xB[S).

The converse also holds in the sense that if (i) and (ii) hold,
and (A,B , S) is a decomposition of G, then P factorizes
w.r.t. G.
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Recursive decomposition of a decomposable graph into
cliques yields the formula:

f (x)
Y

S2S
f
S

(x
S

)⌫(S) =
Y

C2C
f
C

(x
C

).

Here S is the set of minimal complete separators occurring in
the decomposition process and ⌫(S) the number of times
such a separator appears in this process.
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Characterizing decomposable graphs

A graph is chordal if all cycles of length � 4 have chords.

The following are equivalent for any undirected graph G.
(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

There are also many other useful characterizations of chordal
graphs and algorithms that identify them.

Trees are chordal graphs and thus decomposable.
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If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps.

We also have the factorization of densities

f (x |⌃) =
Q

C2C f (xC |⌃
C

)
Q

S2S f (x
S

|⌃
S

)⌫(S)
(7)

where ⌫(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.
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Relations for trace and determinant

Using the factorization (7) we can for example match the
expressions for the trace and determinant of ⌃

tr(KW ) =
X

C2C
tr(K

C

W
C

)�
X

S2S
⌫(S) tr(K

S

W
S

)

and further

det⌃ = {det(K )}�1 =

Q
C2C det{⌃C

}
Q

S2S{det(⌃S

)}⌫(S)

These are some of many relations that can be derived using
the decomposition property of chordal graphs.
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The same factorization clearly holds for the maximum
likelihood estimates:

f (x | ⌃̂) =
Q

C2C f (xC | ⌃̂
C

)
Q

S2S f (x
S

| ⌃̂
S

)⌫(S)
(8)

Moreover, it follows from the general likelihood equations
that

⌃̂
A

= W
A

/n whenever A is complete.

Exploiting this, we can obtain an explicit formula for the
maximum likelihood estimate in the case of a chordal graph.
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For a |d |⇥ |e| matrix A = {a�µ}�2d ,µ2e we let [A]V denote
the matrix obtained from A by filling up with zero entries to
obtain full dimension |V |⇥ |V |, i.e.

⇣
[A]V

⌘

�µ
=

⇢
a�µ if � 2 d , µ 2 e
0 otherwise.

The maximum likelihood estimates exists if and only if n � C
for all C 2 C. Then the following simple formula holds for
the maximum likelihood estimate of K :

K̂ = n

(
X

C2C

h
(w

C

)�1

i
V

�
X

S2S
⌫(S)

h
(w

S

)�1

i
V

)
.
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Mathematics marks

1:Mechanics

2:Vectors

3:Algebra

4:Analysis

5:Statistics

⇣⇣⇣⇣⇣⇣

PPPPPP ⇣⇣⇣⇣⇣⇣

PPPPPPc
c

c
c
c

This graph is chordal with cliques {1, 2, 3}, {3, 4, 5} with
separator S = {3} having ⌫({3}) = 1.
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Since one degree of freedom is lost by subtracting the
average, we get in this example

K̂ = 87

0

B@

w

11

[123]

w

12

[123]

w

13

[123]

0 0

w

21

[123]

w

22

[123]

w

23

[123]

0 0

w

31

[123]

w

32

[123]

w

33

[123]

+ w

33

[345]

� 1/w
33

w

34

[345]

w

35

[345]

0 0 w

43

[345]

w

44

[345]

w

45

[345]

0 0 w

53

[345]

w

54

[345]

w

55

[345]

1

CA

where w ij

[123]

is the ijth element of the inverse of

W
[123]

=

0

@
w
11

w
12

w
13

w
21

w
22

w
23

w
31

w
32

w
33

1

A

and so on.
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Existence of the MLE

The IPS algorithm converges to the maximum likelihood
estimator of K̂ of K provided that the likelihood function
does attain its maximum.

The question of existence is non-trivial.

A chordal cover of G is a chordal graph (no cycles without
chords) G0 of which G is a subgraph.

Let n0 = max
C2C0 |C |, where C0 is the set of cliques in G0 and

let n+ denote smallest possible value of n0.

The quantity ⌧(G) = n+ � 1 is known as the treewidth of G
(Halin, 1976; Robertson and Seymour, 1984).

The condition n > ⌧(G) is su�cient for the existence of the
MLE.
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Mechanics

Vectors

Algebra

Analysis

Statistics

⇣⇣⇣⇣⇣⇣

PPPPPP ⇣⇣⇣⇣⇣⇣

PPPPPPc
c

c
c
c

This graph has treewidth ⌧(G)=2 since it is itself chordal and
the largest clique has size 3.

Hence n = 3 observations is su�cient for the existence of the
MLE.
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�
�
�
�
��

e

e e

eB
1

L
1

B
2

L
2

This graph has also treewidth ⌧(G)=2 since a chordal cover
can be obtained by adding a diagonal edge.

Hence also here n = 3 observations is su�cient for the
existence of the MLE.
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Determining the treewidth ⌧(G) is a di�cult combinatorial
problem (Robertson and Seymour, 1986), but for any n it
can be decided with complexity O(|V |) whether ⌧(G) < n
(Bodlaender, 1997).

If we let n� denote the maximal clique size of G, a necessary
condition is that n � n�.

For n�  n  ⌧(G) it is unclear.
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Buhl (1993) shows for a p-cycle, we have n� = 2 and
⌧(G) = 2. If now n = 2, the probability that the MLE exists
is strictly between 0 and 1. In fact,

P{MLE exists | K = I} = 1� 2

(p � 1)!
.

Similar results hold for the bipartite graphs K
2,m (Uhler,

2012) and other special cases, but general case is unclear.

Recently there has been considerable progress (Gross and
Sullivant, 2015), for example it can be shown that n = 4
observations su�ce for any planar graph, an interesting
parallel to the four-colour theorem.
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The r -core of a graph G is obtained by repeatedly removing
all vertices with less than r neighbours.

It then holds (Gross and Sullivant, 2015) that if the r -core of
G is empty, then n = r observations are enough.
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Studený, M. (2005). Probabilistic Conditional Independence
Structures. Information Science and Statistics.
Springer-Verlag, London.

Uhler, C. (2012). Geometry of maximum likelihood
estimation in Gaussian graphical models. Annals of
Statistics, 40:238–261.

Ste↵en Lauritzen — Likelihood Analysis of Gaussian Graphical Models — Minikurs TUM 2016 — Lecture 2

Slide 43/43


	Conditional independence
	Fundamental properties

	Abstract conditional independence
	Graphoids and semi-graphoids
	Examples

	Markov properties for undirected graphs
	Definitions
	Structural relations among Markov properties

	Basic definitions
	The multivariate Gaussian
	Density of multivariate Gaussian

	Basic properties
	Adding independent Gaussians
	Marginal distributions

	Gaussian graphical models
	Definition

	Gaussian likelihoods
	Maximizing the likelihood
	Likelihood with restrictions
	Iterative Proportional Scaling
	Factorization example
	Factorization theorem

	Graph decomposition
	Definition
	Factorization of Markov distributions
	Properties of decomposability

	Decomposable Gaussian graphical models
	Basic factorizations
	Maximum likelihood estimates
	An example

	Existence of the MLE

