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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Structure Estimation for Gaussian Graphical
Models.

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with a,g = 0 unless
a ~ (3 and ST(G) their positive definite elements.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with a,3 = 0 unless
a ~ (3 and ST(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K € S7(G) and otherwise unknown.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with a,3 = 0 unless
a ~ (3 and ST(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K € S7(G) and otherwise unknown.

The likelihood function based on a sample of size n is
L(K) o (det K)"/2e~ tr(Kw)/2,

where w is the (Wishart) matrix of sums of squares and
products and ¥ ! = K € SH(G).
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Representation via basis matrices
Define the matrices TY, u € V U E as those with elements

1 fueVandi=j=u
Ti =41 ifueEandu=/{ij};
0 otherwise.
then TY u € V UE forms a basis for the linear space S(G)

of symmetric matrices over V which have zero entries Jjj
whenever i and j are non-adjacent in G.
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Representation via basis matrices
Define the matrices TY, u € V U E as those with elements

1 fueVandi=j=u
T¢=11 ifucEandu=1{ij};
0 otherwise.

then TY u € V UE forms a basis for the linear space S(G)
of symmetric matrices over V which have zero entries Jjj
whenever j and j are non-adjacent in G.

We can then identify the family as a (regular and canonical)
exponential family with —tr(T“W)/2,u € VUE as
canonical sufficient statistics.

This yields the likelihood equations

tr(Tw) = ntr(T'Y), wve VUE.
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Iterative Proportional Scaling

For K € ST(G) and c € C, define the operation of adjusting
the c-marginal as follows: Let a= V \ ¢ and

MK — ( n(Wee) ™" + Kea(Kaa) " Kac  Kea ) W

Kac Kaa

This operation is clearly well defined if w,c is positive definite.
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Iterative Proportional Scaling

For K € ST(G) and c € C, define the operation of adjusting
the c-marginal as follows: Let a= V \ ¢ and

M.K = ( n(ch)_1 + Kca(Kaa)_lKac Kea ) ' (1)
Kac Kaa

This operation is clearly well defined if w,c is positive definite.

Next we choose any ordering (ci, ..., c) of the cliques in G.
Choose further Ky = I and define for r =0,1,...

Krt1 = (MCI T MCk)Kr'
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Iterative Proportional Scaling

For K € ST(G) and c € C, define the operation of adjusting
the c-marginal as follows: Let a= V \ ¢ and

M.K = ( n(ch)_1 + Kca(Kaa)_lKac Kea > ' (1)
Kac Kaa

This operation is clearly well defined if w,c is positive definite.

Next we choose any ordering (ci, ..., c) of the cliques in G.
Choose further Ky = I and define for r =0,1,...

Krt1 = (MCI T MCk)Kr'

Then we have:
K= lim K,,

r—o0

provided the maximum likelihood estimate K of K exists.
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Characterizing decomposable graphs

A graph is chordal if all cycles of length > 4 have chords.

The following are equivalent for any undirected graph G.
(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

There are also many other useful characterizations of chordal
graphs and algorithms that identify them.

Trees are chordal graphs and thus decomposable.
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If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps.

We also have the factorization of densities

HCEC f(xclZxc)
[Tses f(xs | Xs) ()

where 1(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.

()

fx| %) =

Similar factorizations naturally hold for the maximum
likelihood estimate X.
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Structure estimation

Advances in computing has set focus on estimation of
structure:

e Model selection (e.g. subset selection in regression)
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Structure estimation

Advances in computing has set focus on estimation of
structure:

e Model selection (e.g. subset selection in regression)

e System identification (engineering)
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Structure estimation

Advances in computing has set focus on estimation of
structure:

e Model selection (e.g. subset selection in regression)
e System identification (engineering)

e Structural learning (Al or machine learning)
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Structure estimation

Advances in computing has set focus on estimation of
structure:

e Model selection (e.g. subset selection in regression)
e System identification (engineering)

e Structural learning (Al or machine learning)

Graphical models describe conditional independence
structures, so good case for formal analysis.
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Structure estimation

Advances in computing has set focus on estimation of
structure:

e Model selection (e.g. subset selection in regression)
e System identification (engineering)

e Structural learning (Al or machine learning)

Graphical models describe conditional independence
structures, so good case for formal analysis.

Methods must scale well with data size, as many structures
and huge collections of data are to be considered.
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Why estimation of structure?

e Parallel to e.g. density estimation

Slide 9/48

Steffen Lauritzen, University of Copenhagen — Structure estimation for G: ian graphical models — Minil TUM 2016 —.cture 3
L



UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEM /

Why estimation of structure?

e Parallel to e.g. density estimation

e Obtain quick overview of relations between variables in
complex systems
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Why estimation of structure?

e Parallel to e.g. density estimation
e Obtain quick overview of relations between variables in

complex systems

e Data mining
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Why estimation of structure?

Parallel to e.g. density estimation

Obtain quick overview of relations between variables in
complex systems

e Data mining

Gene regulatory networks

Steffen Lauritzen, University of Copenhagen — Structure estimation for Gaussian graphical models — Minikurs TUM 2016
Slide 9/48

—.cture 3
L



UNIVERSITY OF C DEPARTMENT OF MATHEM /

Why estimation of structure?

Parallel to e.g. density estimation

Obtain quick overview of relations between variables in
complex systems

e Data mining

Gene regulatory networks

Reconstructing family trees from DNA information
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Why estimation of structure?

Parallel to e.g. density estimation

Obtain quick overview of relations between variables in
complex systems

e Data mining

Gene regulatory networks

Reconstructing family trees from DNA information

General interest in sparsity.
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Markov mesh model

Ble Edk Vew Network Options Windows Wizards Hep
[sd ms@ax Smam| 2 B
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PC algorithm
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Crudest algorithm (HUGIN), 10000 simulated cases
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Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases
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Tree model
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PC algorithm, 10000 cases, correct reconstruction
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Bayesian GES on tree
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Chest clinic
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10000 simulated cases
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SNPs and gene expressions

min BIC forest
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Methods for structure identification in graphical models can
be classified into three types:

e score-based methods: For example optimizing a

penalized likelihood by using convex programming e.g.
glasso;
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Methods for structure identification in graphical models can
be classified into three types:

e score-based methods: For example optimizing a
penalized likelihood by using convex programming e.g.
glasso;

e Bayesian methods: ldentifying posterior distributions
over graphs; can also use posterior probability as score.
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Methods for structure identification in graphical models can
be classified into three types:

e score-based methods: For example optimizing a
penalized likelihood by using convex programming e.g.
glasso;

e Bayesian methods: ldentifying posterior distributions
over graphs; can also use posterior probability as score.

e constraint-based methods: Querying conditional
independences and identifying compatible independence
structures, for example PC, PC*, NPC, IC, ClI, FCI, SIN,
QP, ...
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Penalized likelihood

Methods based on pure maximum likelihood are not feasible
when the dimension of the parameter space varies.
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Penalized likelihood

Methods based on pure maximum likelihood are not feasible
when the dimension of the parameter space varies.

Trade off goodness-of-fit, measured by the maximized
likelihood, against the complexity of the model.
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Penalized likelihood

Methods based on pure maximum likelihood are not feasible
when the dimension of the parameter space varies.

Trade off goodness-of-fit, measured by the maximized
likelihood, against the complexity of the model.

IC.(G) = —2log Lg(0g) + xdim(G),

0g is the MLE, dim(G) is the number of free parameters, and
K is a constant that gives the exchange rate for trading fit
and parameters.
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Penalized likelihood

Methods based on pure maximum likelihood are not feasible
when the dimension of the parameter space varies.

Trade off goodness-of-fit, measured by the maximized
likelihood, against the complexity of the model.

IC.(G) = —2log Lg(0g) + xdim(G),

0g is the MLE, dim(G) is the number of free parameters, and
K is a constant that gives the exchange rate for trading fit
and parameters.

K may depend on the number n of observations, but is
constant over the set of possible graphs &.
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Akaike's Information Criterion

The criterion AIC has x = 2 independently of the number of
observations. It is meant to optimize the prediction error for
predicting the next observation.
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Akaike's Information Criterion

The criterion AIC has x = 2 independently of the number of
observations. It is meant to optimize the prediction error for
predicting the next observation.

AIC is not consistent for n — oo as it will tend to have too
many parameters.
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Akaike's Information Criterion

The criterion AIC has x = 2 independently of the number of
observations. It is meant to optimize the prediction error for
predicting the next observation.

AIC is not consistent for n — oo as it will tend to have too
many parameters.

Hence used for a Gaussian graphical model for large n, the
model will tend not to be sparse.
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Bayesian Information Criterion

An asymptotic Bayesian argument leads to BIC, which has
K = log n, where n is the number of observations.
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Bayesian Information Criterion

An asymptotic Bayesian argument leads to BIC, which has
K = log n, where n is the number of observations.

The BIC ensures consistent estimation of the graph.
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Bayesian Information Criterion

An asymptotic Bayesian argument leads to BIC, which has
K = log n, where n is the number of observations.

The BIC ensures consistent estimation of the graph.

However, the true structure can be identified faster if, say
kn = Cloglogn

for some C > 1.
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Other penalized methods

Other penalized likelihood methods use criteria of the form
(G, 0g) = —2log Lg(0g) + 0],

where ||6g|| is measuring the size of the parameter, for
example using a vector space norm.
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Other penalized methods

Other penalized likelihood methods use criteria of the form
£x(G.0g) = —2log Lg(0g) + xl|0g]l,

where ||6g|| is measuring the size of the parameter, for
example using a vector space norm.

An example of this for Gaussian graphical models is the
so-called graphical lasso based on minimizing

ls(K) = —2log L(K) + &l |K]1

where now the graph G is only implicitly represented through
K itself.
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Other penalized methods

Other penalized likelihood methods use criteria of the form
£x(G.0g) = —2log Lg(0g) + xl|0g]l,

where ||6g|| is measuring the size of the parameter, for
example using a vector space norm.

An example of this for Gaussian graphical models is the
so-called graphical lasso based on minimizing

ls(K) = —2log L(K) + &l |K]1

where now the graph G is only implicitly represented through
K itself.

This is a convex optimization problem and in some sense £,
is a convex variant of the IC criteria.
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.

One then writes:

f(x|G) = / F(x| K)mg(dK)
Kes(G)*+
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.

One then writes:
fx19) = [ flx| K)mo(dK)
KeS(G)*

and further
m(G | x) o< f(x | G)m(G).
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.

One then writes:
F(x|G) = / (x| K)mg(dK)
KeS(G)*

and further
m(G | x) o< f(x | G)m(G).

Attempting, say, to maximize m(G | x) over G leads to the
MAP estimate of G.
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.

One then writes:
fx19) = [ flx| K)mo(dK)
KeS(G)*
and further

(G ] x) oc F(x | G)m(G)-

Attempting, say, to maximize 7(G | x) over G leads to the
MAP estimate of G.

Asymptotically for large n this would be equivalent to BIC.
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Estimating trees and forests

The simplest case to consider is the case where the unknown
conditional independence structure is a tree T € T(V);
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Estimating trees and forests

The simplest case to consider is the case where the unknown
conditional independence structure is a tree T € T(V);

since a tree is decomposable, any distribution P which
factorizes w.r.t. T = (V, E) has a density of the form

. He f uv(Xuv
f(X)_HVE\/?\/E( v) 1 H f( (%) Hf Xy).
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Maximum likelihood trees

Next we shall consider the situation where we have a sample
x = (xt,...,x") from a distribution P of X = X\, which is
Gaussian and is known to factorize according to a tree

T € T(V) but both P and T is otherwise unknown.

Steffen Lauritzen, University of Copenhagen — Structure estimation for Gaussian graphical models — Minikurs TUM 2016 —.cture 3
Slide 26/48 e
@




UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Maximum likelihood trees

Next we shall consider the situation where we have a sample
x = (xt,...,x") from a distribution P of X = X\, which is
Gaussian and is known to factorize according to a tree

T € T(V) but both P and T is otherwise unknown.

In other words, we assume the unknown concentration matrix
K satisfies
K e UTGQ(V)S—F(T).
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Maximum likelihood trees

Next we shall consider the situation where we have a sample
x = (xt,...,x") from a distribution P of X = X\, which is
Gaussian and is known to factorize according to a tree

T € T(V) but both P and T is otherwise unknown.

In other words, we assume the unknown concentration matrix
K satisfies
K e UTGQ(V)S—F(T).

To maximize the likelihood function over this parameter
space, we first maximize for a fixed tree to get the profile
likelihood L(T | x), where

(T =LT|x)= sup L(K|x);
KeSH(T)

Steffen Lauritzen, University of Copenhagen — Structure estimation for Gaussian graphical models — Minikurs TUM 2016 —.c
Slide 26/48




UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Maximum likelihood trees

Next we shall consider the situation where we have a sample
x = (x,...,x") from a distribution P of X = X\, which is
Gaussian and is known to factorize according to a tree

T € T(V) but both P and T is otherwise unknown.

In other words, we assume the unknown concentration matrix
K satisfies
K e UTe‘Z(V)S+(T)-

To maximize the likelihood function over this parameter
space, we first maximize for a fixed tree to get the profile
likelihood L(T | x), where

~

(T =LT|x)= sup L(K|x);
KeSH(T)

we then further maximize L(7") over all trees T € T(V).
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Since a tree is decomposable, the profile likelihood satisfies
LTIx) = f(x|Kr)
HeeE f[e] (Xe)
[lev f[V](XV)d(V)_1
f[uv] XUV)
H v (xv)-

uveE fi“](xu)fiV] XV veVv
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Since a tree is decomposable, the profile likelihood satisfies

[(T|x) = f(x|Ky)
HeeE f[e](Xe)
[lev f[v](XV)d(V)_1

f[uv] Xuv H
[v] (xv)-
uveE fi“](xu)fiV] XV veVv

Here f[A](x) denotes the maximized likelihood for the
marginal distribution of X4 based on data x, only and using
the saturated model for Xj4.
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More precisely, for x = (x},...,x") we have

() = (2m) 7" det(Wyyyy /m) "/ rr (W) Wi /2

= n"(27)""(Wuuwi — WL2,V)*"/2 exp(—n)

and

f,EV] (X) = (27T)_n/2(va/n)_n/2 exp(—n/2)
nn/2(27T)—n/2(va)—n/2 exp(—n/2),

where W = {wy,, u,v € V} is the Wishart matrix of sums
and squares of products.
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Thus we get in particular

f 2
fiuv] (XUV) . h WyuWyw — Wy,

n
2 2 = g—————— = —=|
f[“](X“)f[V] (XV) 2 WyuWyy 2

Og(l_rgv)

where r,, is the empirical correlation coefficient

ruy = Wuv/\/ WyuuWyy -
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Define the empirical correlation weight w,, of the edge uv as
n
Wyy = _5 |og(1 - rgv)

and let

w(T) = Z Wuv

uveE(T)

denote the total empirical weight of the tree 7.
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Define the empirical correlation weight w,, of the edge uv as
n
Wyy = _5 |og(1 - rgv)

and let

w(T) = Z Wuv

uveE(T)
denote the total empirical weight of the tree 7.

The matrix Q = {wyy } is the correlation weight matrix.
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Further let L()) denote the maximized likelihood under

independence
L) = T fnt)-
veVv
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Further let L()) denote the maximized likelihood under

independence
L) = T fnt)-
veVv

Then, clearly, it holds that

log L(T) —log L) =w(T) = > wu. (4)
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We say that T is a maximum likelihood tree based on a
sample x = x1, ..., x" if T satisfies

L(TYy= sup L(T).
TeZ(V)
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We say that T is a maximum likelihood tree based on a
sample x = x1, ..., x" if T satisfies

L(TYy= sup L(T).
TeZ(V)

A spanning tree T of a connected G(V/, E) is a subtree
T = (V, E7) of G which has the same vertex set and is a
tree. Thatis, Er C E(G).
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We then have the following result:

Theorem

A tree T, € T(V) is a maximum likelihood tree if and only if
it is a maximum weight spanning tree (MWST) of the
complete graph with vertex set V' for the weight matrix
with "

Wuy = ) log(1 — rgv)

that is

T =arg max [(T) < T = arg maxw(T).
TeX(V) TEZ(V)
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Kruskal's algorithm

This runs as follows and outputs a MWST:

Slide 34/48
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Kruskal's algorithm

This runs as follows and outputs a MWST: smallskip

Order all off-diagonal elements in the matrix € from largest
to smallest so that for E = {ey,..., ek} where

k= [V[(V —1)/2 we; > we, Whenever i > ;.
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Kruskal's algorithm

This runs as follows and outputs a MWST: smallskip

Order all off-diagonal elements in the matrix € from largest
to smallest so that for E = {ey,..., ex} where

k= [V[(V —1)/2 we; > we, Whenever i > ;.

O Let 7 = (V,0)
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Kruskal's algorithm

This runs as follows and outputs a MWST: smallskip
Order all off-diagonal elements in the matrix € from largest
to smallest so that for E = {ey,..., ex} where

= |V|(V —1)/2 we; > we; whenever i > j.

O Let 7 = (V,0)
® for i =1,/ + 1 until F is a spanning tree do:

© if E(F)Uegis a forest let E(F) = E(F) U g, else let
E(F) = E(F).

Steffen Lauritzen, University of Copenhagen — Structure estimation for Gaussian graphical models — Minikurs TUM 2016 —.c
Slide 34/48 P
@




UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

Kruskal's algorithm

This runs as follows and outputs a MWST: smallskip
Order all off-diagonal elements in the matrix € from largest
to smallest so that for E = {ey,..., ex} where

= |V|(V —1)/2 we; > we; whenever i > j.

O Let F = (V,0)

® for i =1,/ + 1 until F is a spanning tree do:

© if E(F)Uegis a forest let E(F) = E(F) U g, else let
E(F) = E(F).

O return F.
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Penalized likelihood forests

If we instead wish to estimate an unknown forest, i.e. assume
that K € S*(F) where F is unknown, we use a penalized
form of the likelihood:

IC(F) = —2log L(F) + w{|V| + |E(F)|}

since |V| 4 |E(F)| is the dimension of the model determined
by F.
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Penalized likelihood forests

If we instead wish to estimate an unknown forest, i.e. assume
that K € S*(F) where F is unknown, we use a penalized
form of the likelihood:

IC(F) = —2log L(F) + w{|V| + |E(F)|}

since |V| 4 |E(F)| is the dimension of the model determined
by F.
Using (4) yields

IC.(F) = —2{Q(F)— &|E(F)|/2} + const

= -2 Z (W — K/2) p + const.

uveE(F)
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Thus we can minimize the /C-score by using a modification
of Kruskal's algorithm on Q", where W, = w,, — k/2:
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Thus we can minimize the /C-score by using a modification
of Kruskal's algorithm on Q", where W, = w,, — k/2:

Discard all negative off-diagonal elements in the matrix QF
and order the remaining from largest to smallest.
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Thus we can minimize the /C-score by using a modification
of Kruskal's algorithm on Q", where W, = w,, — k/2:

Discard all negative off-diagonal elements in the matrix QF
and order the remaining from largest to smallest.

O Let F =(V,0)
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Thus we can minimize the /C-score by using a modification
of Kruskal's algorithm on Q", where W, = w,, — k/2:

Discard all negative off-diagonal elements in the matrix QF
and order the remaining from largest to smallest.

O Let F =(V,0)
@ for i =1,/ + 1 until F is a spanning tree do:

© if E(F)Ue; is a forest let E(F) = E(F) U g, else let
E(F) = E(F).
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Thus we can minimize the /C-score by using a modification
of Kruskal's algorithm on Q", where W, = w,, — k/2:

Discard all negative off-diagonal elements in the matrix QF
and order the remaining from largest to smallest.

O Let F = (V,0)

@ for i =1,/ + 1 until F is a spanning tree do:

© if E(F)Ue; is a forest let E(F) = E(F) U g, else let
E(F)=E(F).

O return F.
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BodyFat: min BIC forest

Data in Hgjsgaard et al. (2012). Measurements of body parts
interesting for prediction of body fat.

Steffen Lauritzen,
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SNPs and gene expressions

min BIC forest
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Random graphs for posterior analysis

A Bayesian approach to graphical model analysis implies
setting up a prior distribution over a class of graphs, say
undirected trees, and then finding the posterior distribution.
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Random graphs for posterior analysis

A Bayesian approach to graphical model analysis implies
setting up a prior distribution over a class of graphs, say
undirected trees, and then finding the posterior distribution.
For example, if the prior is uniform over trees, and
parameters are hyper Markov (Dawid and Lauritzen, 1993),
the posterior distribution based on data x is

pr(rIx)cw(r)= [ BFe

ecE(T)

where BF, is the Bayes factor for independence among the
variables at the endpoints of e;
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Random graphs for posterior analysis

A Bayesian approach to graphical model analysis implies
setting up a prior distribution over a class of graphs, say
undirected trees, and then finding the posterior distribution.

For example, if the prior is uniform over trees, and
parameters are hyper Markov (Dawid and Lauritzen, 1993),
the posterior distribution based on data x is

pr(rIx)cw(r)= [ BFe

ecE(T)

where BF, is the Bayes factor for independence among the
variables at the endpoints of ¢;

The unknown normalization constant ) _ w(7) can be found
as a determinant using the matrix tree theorem.
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For chordal graphs G the similar expression becomes

[Tcecgy w(Clx)
[Isesg) w(S| x)re(S)’

where C(G) are the maximal cliques of G, S(G) the minimal
complete separators, and vg(S) are certain graph invariants.

P (G| x) (5)
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For chordal graphs G the similar expression becomes

[Tcecgy w(Clx)
[Ises(g) w(S [x)e()’

where C(G) are the maximal cliques of G, S(G) the minimal
complete separators, and vg(S) are certain graph invariants.
How can posterior distributions of this form be represented

and/or simulated and what are the properties of such
distributions?

P (G| x) (5)
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For chordal graphs G the similar expression becomes

[Tcecgy w(Clx)
[Ises(g) w(S [x)e()’

where C(G) are the maximal cliques of G, S(G) the minimal
complete separators, and vg(S) are certain graph invariants.

P (G| x) (5)

How can posterior distributions of this form be represented
and/or simulated and what are the properties of such
distributions?

Even case where the graphs considered is all forests is
difficult
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For chordal graphs G the similar expression becomes

[Tcecgy w(Clx)
[Ises(g) w(S [x)e()’

where C(G) are the maximal cliques of G, S(G) the minimal
complete separators, and vg(S) are certain graph invariants.

P (G| x) (5)

How can posterior distributions of this form be represented
and/or simulated and what are the properties of such
distributions?

Even case where the graphs considered is all forests is
difficult

Recent progress concerning structural Markov properties of
distributions in (5) has been made by Byrne and Dawid
(2015).
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Summary for trees and forests

e Direct likelihood methods (ignoring penalty terms) lead
to sensible results.

e (Boootstrap) sampling distribution of tree MLE can be
simulated

e Penalty terms additive along branches, so highest AIC or
BIC scoring tree (forest) also available using a MWST
algorithm.

e Tree methods scale extremely well with both sample size
and number of variables;

e Pairwise marginal counts are sufficient statistics for the
tree problem (empirical covariance matrix in the
Gaussian case).

Note sufficiency holds despite parameter space very different
from open subset of RX.
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Graphical lasso

Consider an undirected Gaussian graphical model and the
h-penalized log-likelihood function

20 pen(K) = log det K — tr(KW) — k||K]|1.

The penalty [|K||1 =3, , [kuv| is essentially a convex
relaxation of the number of edges in the graph and
optimization of the penalized likelihood will typically lead to
several k,, = 0 and thus in effect estimate a particular graph.

This penalized likelihood can be maximized efficiently
(Banerjee et al., 2008) as implemented in the graphical lasso
(Friedman et al., 2008).

Beware: not scale-invariant!
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glasso for bodyfat
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Optimizing the convex glasso problem
We shall maximize the penalized likelihood function

((K) = logdet(K) — tr(WK) — &||K||1.
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Optimizing the convex glasso problem
We shall maximize the penalized likelihood function

((K) = logdet(K) — tr(WK) — &||K||1.
This has subgradient equation 94(K) = 0, where
OU(K) =X -~ W — &l

and ' = sign(K) where sign(k,,) =1 if k,, >0,
sign(kyy) = —1if ky, <0, and sign(ky) € [-1,1] if
kyy = 0.
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Optimizing the convex glasso problem
We shall maximize the penalized likelihood function

((K) = logdet(K) — tr(WK) — &||K||1.
This has subgradient equation 94(K) = 0, where
OU(K) =X -~ W — &l

and I' = sign(K) where sign(k,,) =1 if ky,, >0,
sign(kyy) = —1if ky, <0, and sign(ky) € [-1,1] if

ky,, = 0.

Hence the glasso estimate ¥ of ¥ satisfies
Y = W+l

Compare to MLE A B
Y=W+T*

where v;, = 0 whenever u ~ v.
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Blocking the subgradient equation

Write the subgradient equation in block matrix form with
S = W, the lower right corner being 1 x 1 we get

S > r
( 1T1 Sm)_( %1 Ul2>—|—m( 1T1 ’712):0.
S12 S22 O12 022 M2 1
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Blocking the subgradient equation

Write the subgradient equation in block matrix form with
S = W, the lower right corner being 1 x 1 we get

S11 s P r
< 1T1 12)_( %1 012>_|_KJ( 1T1 ’712):0.
S22 S22 O12 022 T2 1
Focusing on the upper right block of this equation we get

s12 — o012 + k712 = 0.
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Blocking the subgradient equation

Write the subgradient equation in block matrix form with
S = W, the lower right corner being 1 x 1 we get

S11 s P r
< 1T1 12)_( #1 012>_|_KJ< 1T1 712):0.
S22 S22 O12 022 T2 1
Focusing on the upper right block of this equation we get

s12 — o012 + k712 = 0.

Using the identity (X11) o1 = —k2_21k12 = (3 and thus
sign(ki2) = — sign(B) we can rewrite this equation as

Y1158 — s12 + ksign(B) = 0.
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Lasso regression

The Lasso regression problem is

minimize (v = Z8) (v — 28)/2 + &l|8 1.
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Lasso regression

The Lasso regression problem is

minimize (y—Zﬁ)T(y—ZB)/2+K||B||1.

The subgradient equation for this problem becomes

Z'7ZB8 - Z"y + ksign(B) = 0.
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Lasso regression
The Lasso regression problem is
minimize (v —2ZB8)"(y — 2B)/2 + k||B]1.
The subgradient equation for this problem becomes
Z'7ZB8 - Z"y + ksign(B) = 0.

Compare this to the subgradient equation for the graphical
lasso
leﬁ — S12 + HSigH(B) =0.
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Lasso regression

The Lasso regression problem is
minimize  (y — Z8) (v — Z8)/2+ x| 81.
The subgradient equation for this problem becomes
Z'7ZB8 - Z"y + ksign(B) = 0.

Compare this to the subgradient equation for the graphical
lasso
leﬁ — S12 + Ksign(ﬂ) =0.

There is a simple iterative cyclic descent algorithm for solving
the first equation, and this can of course be used to solve the
second equation.
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.

@ Initialize ¥ < S + &/; Buy < 0,u,v € V.
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| — 1)+
Input: Empirical covariance matrix S; penalty parameter x;

Output: Glasso estimate K*; concentration graph G*.

O Initialize ¥ + S+ kl; B, < O, u,v e V.
® Repeat for v € V until convergence
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.
O Initialize ¥ + S+ kl; B, < O, u,v e V.

® Repeat for v € V until convergence
@ For u € V\ v until convergence:

Buw < T (suv = 2wy Tuw B f-c) %
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.
O Initialize ¥ + S+ kl; B, < O, u,v e V.

® Repeat for v € V until convergence
@ For u € V\ v until convergence:

ﬁuv «~ T (suv — Zw;év Uuwﬂwv; K) /va;
9 For uec V \ {V} do Oyy < ZW#V UuW/BWV;
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.

O Initialize X < S+ kl; By, < 0,u,v e V.
® Repeat for v € V until convergence
@ For u € V\ v until convergence:

Buw < T (suv = 2wy Tuw B f-c) %

9 For uec V \ {V} do Oyy < ZW#V UuW/BWV;
©® For v € V do:
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.

O Initialize X < S+ kl; By, < 0,u,v e V.
® Repeat for v € V until convergence
@ For u € V\ v until convergence:

Buw < T (suv = 2wy Tuw B f-c) %

9 For uec V \ {V} do Oyy < ZW#V UuW/BWV;
©® For v € V do:

(1] i%vv — 1/(va - Zw7gv UVW/BWV)
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.

O Initialize X < S+ kl; By, < 0,u,v e V.
® Repeat for v € V until convergence
@ For u € V\ v until convergence:

Buw < T (suv = 2wy Tuw B f-c) %

9 For uc V \ {V} do Oyy < ZW#V UuW/BWV;
©® For v € V do:

(1] i%vv — 1/(va - Zw7gv UVW/BWV)
@ For uc V\vdo ky — —Bukn.
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T(x, t) = sign(x)(|x| = t)+;

Input: Empirical covariance matrix S; penalty parameter x;
Output: Glasso estimate K*; concentration graph G*.

O Initialize X < S+ kl; By < 0, u,v e V.
® Repeat for v € V until convergence

@ For u € V\ v until convergence:

Bu T (suv = 2wty Ouw B H) /Ow;

O For ue V\{v}doow <>, ., ouwbBmwi
©® For v € V do:

(1] i%vv — 1/(O'vv - ZW¢V UVW/BWV)

@A For uc V\vdo k, < —Bukuw.
O Return K and incidence graph of K.
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An alternative algorithm

This algorithm updates 2 x 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal's algorithm.
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An alternative algorithm

This algorithm updates 2 x 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal's algorithm.

Consider the restricted convex optimization problem:

minimize — logdet(K) + tr(KS) + &||K||1
subject to kij = kjj for i # uor j# v.
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An alternative algorithm
This algorithm updates 2 x 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal's algorithm.

Consider the restricted convex optimization problem:

minimize — logdet(K) + tr(KS) + &||K||1
subject to kij = kjj for i # uor j# v.

Using Schur complements, the objective function becomes
equivalent to

—log det(Kee — KeaKo Kac) 4 tr(KeeSee) + K| Kee| |1
where ¢ = {u,v} and a =V \ {u, v}.
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An alternative algorithm
This algorithm updates 2 x 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal's algorithm.

Consider the restricted convex optimization problem:
minimize — logdet(K) + tr(KS) + &||K||1
subject to kij = kjj for i # uor j# v.

Using Schur complements, the objective function becomes
equivalent to

—log det(Kee — KeaKo Kac) 4 tr(KeeSee) + K| Kee| |1

where ¢ = {u,v} and a =V \ {u, v}.
This problem is trivial to solve without iteration.
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An alternative algorithm
This algorithm updates 2 x 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal's algorithm.

Consider the restricted convex optimization problem:
minimize — logdet(K) + tr(KS) + &||K||1
subject to kij = kjj for i # uor j# v.

Using Schur complements, the objective function becomes
equivalent to

—log det(Kee — KeaKo Kac) 4 tr(KeeSee) + K| Kee| |1

where ¢ = {u,v} and a =V \ {u, v}.
This problem is trivial to solve without iteration.

Iterating through edges in order of decreasing unexplained
correlation should give a very efficient algorithm.
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