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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Structure Estimation for Gaussian Graphical
Models.

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with aαβ = 0 unless
α ∼ β and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

The likelihood function based on a sample of size n is

L(K ) ∝ (detK )n/2e− tr(Kw)/2,

where w is the (Wishart) matrix of sums of squares and
products and Σ−1 = K ∈ S+(G).
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Representation via basis matrices
Define the matrices T u, u ∈ V ∪ E as those with elements

T u
ij =


1 if u ∈ V and i = j = u

1 if u ∈ E and u = {i , j}
0 otherwise.

;

then T u, u ∈ V ∪ E forms a basis for the linear space S(G)
of symmetric matrices over V which have zero entries ij
whenever i and j are non-adjacent in G.

We can then identify the family as a (regular and canonical)
exponential family with − tr(T uW )/2, u ∈ V ∪ E as
canonical sufficient statistics.

This yields the likelihood equations

tr(T uw) = n tr(T uΣ), u ∈ V ∪ E .
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Iterative Proportional Scaling
For K ∈ S+(G) and c ∈ C, define the operation of adjusting
the c-marginal as follows: Let a = V \ c and

McK =

(
n(wcc)−1 + Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (1)

This operation is clearly well defined if wcc is positive definite.

Next we choose any ordering (c1, . . . , ck) of the cliques in G.
Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Mc1 · · ·Mck )Kr .

Then we have:
K̂ = lim

r→∞
Kr ,

provided the maximum likelihood estimate K̂ of K exists.
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Characterizing decomposable graphs

A graph is chordal if all cycles of length ≥ 4 have chords.

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

There are also many other useful characterizations of chordal
graphs and algorithms that identify them.

Trees are chordal graphs and thus decomposable.
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If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps.

We also have the factorization of densities

f (x |Σ) =

∏
C∈C f (xC |ΣC )∏

S∈S f (xS |ΣS)ν(S)
(2)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.

Similar factorizations naturally hold for the maximum
likelihood estimate Σ̂.

Steffen Lauritzen, University of Copenhagen — Structure estimation for Gaussian graphical models — Minikurs TUM 2016 — Lecture 3

Slide 7/48



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Structure estimation

Advances in computing has set focus on estimation of
structure:

• Model selection (e.g. subset selection in regression)

• System identification (engineering)

• Structural learning (AI or machine learning)

Graphical models describe conditional independence
structures, so good case for formal analysis.

Methods must scale well with data size, as many structures
and huge collections of data are to be considered.
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Why estimation of structure?

• Parallel to e.g. density estimation

• Obtain quick overview of relations between variables in
complex systems

• Data mining

• Gene regulatory networks

• Reconstructing family trees from DNA information

• General interest in sparsity.
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Markov mesh model
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PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases
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Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases
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Tree model

PC algorithm, 10000 cases, correct reconstruction
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Bayesian GES on tree
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Chest clinic
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PC algorithm

10000 simulated cases
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Bayesian GES
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SNPs and gene expressions
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Methods for structure identification in graphical models can
be classified into three types:

• score-based methods: For example optimizing a
penalized likelihood by using convex programming e.g.
glasso;

• Bayesian methods: Identifying posterior distributions
over graphs; can also use posterior probability as score.

• constraint-based methods: Querying conditional
independences and identifying compatible independence
structures, for example PC, PC*, NPC, IC, CI, FCI, SIN,
QP, . . .
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Penalized likelihood

Methods based on pure maximum likelihood are not feasible
when the dimension of the parameter space varies.

Trade off goodness-of-fit, measured by the maximized
likelihood, against the complexity of the model.

ICκ(G) = −2 log LG(θ̂G) + κ dim(G),

θ̂G is the MLE, dim(G) is the number of free parameters, and
κ is a constant that gives the exchange rate for trading fit
and parameters.

κ may depend on the number n of observations, but is
constant over the set of possible graphs G.
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Akaike’s Information Criterion

The criterion AIC has κ = 2 independently of the number of
observations. It is meant to optimize the prediction error for
predicting the next observation.

AIC is not consistent for n→∞ as it will tend to have too
many parameters.

Hence used for a Gaussian graphical model for large n, the
model will tend not to be sparse.
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Bayesian Information Criterion

An asymptotic Bayesian argument leads to BIC, which has
κ = log n, where n is the number of observations.

The BIC ensures consistent estimation of the graph.

However, the true structure can be identified faster if, say

κn = C log log n

for some C > 1.
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Other penalized methods

Other penalized likelihood methods use criteria of the form

`κ(G, θG) = −2 log LG(θG) + κ||θG ||,

where ||θG || is measuring the size of the parameter, for
example using a vector space norm.

An example of this for Gaussian graphical models is the
so-called graphical lasso based on minimizing

`κ(K ) = −2 log L(K ) + κ||K ||1

where now the graph G is only implicitly represented through
K itself.

This is a convex optimization problem and in some sense `κ
is a convex variant of the IC criteria.
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Bayesian methods

A full Bayesian approach will use suitable prior distributions,
in the Gaussian case known as hyper Markov Wishart and
hyper Markov inverse Wishart prior distributions.

One then writes:

f (x | G) =

∫
K∈S(G)+

f (x |K )πG(dK )

and further
π(G | x) ∝ f (x | G)π(G).

Attempting, say, to maximize π(G | x) over G leads to the
MAP estimate of G.

Asymptotically for large n this would be equivalent to BIC.
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Estimating trees and forests

The simplest case to consider is the case where the unknown
conditional independence structure is a tree T ∈ T(V );

since a tree is decomposable, any distribution P which
factorizes w.r.t. T = (V ,E ) has a density of the form

f (x) =

∏
e∈E fe(xe)∏

v∈V fv (xv )d(v)−1
=
∏
uv∈E

fuv (xuv )

fu(xu)fv (xv )

∏
v∈V

fv (xv ).

(3)
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Maximum likelihood trees

Next we shall consider the situation where we have a sample
x = (x1, . . . , xn) from a distribution P of X = XV which is
Gaussian and is known to factorize according to a tree
T ∈ T(V ) but both P and T is otherwise unknown.

In other words, we assume the unknown concentration matrix
K satisfies

K ∈ ∪T ∈T(V )S+(T ).

To maximize the likelihood function over this parameter
space, we first maximize for a fixed tree to get the profile
likelihood L̂(T | x), where

L̂(T ) = L̂(T | x) = sup
K∈S+(T )

L(K | x);

we then further maximize L̂(T ) over all trees T ∈ T(V ).
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Since a tree is decomposable, the profile likelihood satisfies

L̂(T | x) = f (x | K̂T )

=

∏
e∈E f̂[e](xe)∏

v∈V f̂[v ](xv )d(v)−1

=
∏
uv∈E

f̂[uv ](xuv )

f̂[u](xu)f̂[v ](xv )

∏
v∈V

f̂[v ](xv ).

Here f̂[A](x) denotes the maximized likelihood for the
marginal distribution of XA based on data xa only and using
the saturated model for XA.
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More precisely, for x = (x1, . . . , xn) we have

f̂[uv ](x) = (2π)−n det(W{uv}/n)−n/2e− tr{n(W{uv})−1W{uv}}/2

= nn(2π)−n(wuuwvv − w2
uv )−n/2 exp(−n)

and

f̂[v ](x) = (2π)−n/2(Wvv/n)−n/2 exp(−n/2)

= nn/2(2π)−n/2(wvv )−n/2 exp(−n/2),

where W = {wuv , u, v ∈ V } is the Wishart matrix of sums
and squares of products.
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Thus we get in particular

log
f̂[uv ](xuv )

f̂[u](xu)f̂[v ](xv )
= −n

2
log

wuuwvv − w2
uv

wuuwvv
= −n

2
log(1−r2uv )

where ruv is the empirical correlation coefficient

ruv = wuv/
√
wuuwvv .
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Define the empirical correlation weight ωuv of the edge uv as

ωuv = −n

2
log(1− r2uv )

and let
ω(T ) =

∑
uv∈E(T )

ωuv

denote the total empirical weight of the tree T .

The matrix Ω = {ωuv} is the correlation weight matrix.
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Further let L̂(∅) denote the maximized likelihood under
independence

L̂(∅) =
∏
v∈V

f̂[v ](xv ).

Then, clearly, it holds that

log L̂(T )− log L̂(∅) = ω(T ) =
∑

uv∈E(T )

ωuv . (4)
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We say that T̂ is a maximum likelihood tree based on a
sample x = x1, . . . , xn if T̂ satisfies

L(T̂ ) = sup
T ∈T(V )

L̂(T ).

A spanning tree T of a connected G(V ,E ) is a subtree
T = (V ,ET ) of G which has the same vertex set and is a
tree. That is, ET ⊆ E (G).
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We then have the following result:

Theorem

A tree T̂∗ ∈ T(V ) is a maximum likelihood tree if and only if
it is a maximum weight spanning tree (MWST) of the
complete graph with vertex set V for the weight matrix Ω
with

ωuv = −n

2
log(1− r2uv )

that is

T̂ = arg max
T ∈T(V )

L̂(T ) ⇐⇒ T̂ = arg max
T ∈T(V )

ω(T ).
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Kruskal’s algorithm

This runs as follows and outputs a MWST:

smallskip
Order all off-diagonal elements in the matrix Ω from largest
to smallest so that for E = {e1, . . . , ek} where
k = |V |(V − 1)/2 ωei ≥ ωej whenever i > j .

1 Let F = (V , ∅)
2 for i = 1, i + 1 until F is a spanning tree do:

3 if E (F) ∪ ei is a forest let E (F) = E (F) ∪ ei , else let
E (F) = E (F).

4 return F .
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Penalized likelihood forests

If we instead wish to estimate an unknown forest, i.e. assume
that K ∈ S+(F) where F is unknown, we use a penalized
form of the likelihood:

ICκ(F) = −2 log L̂(F) + κ{|V |+ |E (F)|}

since |V |+ |E (F)| is the dimension of the model determined
by F .

Using (4) yields

ICκ(F) = −2 {Ω(F)− κ|E (F)|/2}+ const

= −2

 ∑
uv∈E(F)

(ωuv − κ/2)

+ const.
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Thus we can minimize the IC -score by using a modification
of Kruskal’s algorithm on Ωκ, where ωκuv = ωuv − κ/2:

Discard all negative off-diagonal elements in the matrix Ωκ

and order the remaining from largest to smallest.

1 Let F = (V , ∅)
2 for i = 1, i + 1 until F is a spanning tree do:

3 if E (F) ∪ ei is a forest let E (F) = E (F) ∪ ei , else let
E (F) = E (F).

4 return F .
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Thus we can minimize the IC -score by using a modification
of Kruskal’s algorithm on Ωκ, where ωκuv = ωuv − κ/2:

Discard all negative off-diagonal elements in the matrix Ωκ
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BodyFat: min BIC forest

Data in Højsgaard et al. (2012). Measurements of body parts
interesting for prediction of body fat.
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SNPs and gene expressions
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Random graphs for posterior analysis

A Bayesian approach to graphical model analysis implies
setting up a prior distribution over a class of graphs, say
undirected trees, and then finding the posterior distribution.

For example, if the prior is uniform over trees, and
parameters are hyper Markov (Dawid and Lauritzen, 1993),
the posterior distribution based on data x is

p∗(τ | x) ∝ w(τ) =
∏

e∈E(τ)

BFe

where BFe is the Bayes factor for independence among the
variables at the endpoints of e;

The unknown normalization constant
∑

τ w(τ) can be found
as a determinant using the matrix tree theorem.
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For chordal graphs G the similar expression becomes

p∗(G | x) ∝
∏

C∈C(G) w(C | x)∏
S∈S(G) w(S | x)νG(S)

, (5)

where C(G) are the maximal cliques of G, S(G) the minimal
complete separators, and νG(S) are certain graph invariants.

How can posterior distributions of this form be represented
and/or simulated and what are the properties of such
distributions?

Even case where the graphs considered is all forests is
difficult

Recent progress concerning structural Markov properties of
distributions in (5) has been made by Byrne and Dawid
(2015).
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Summary for trees and forests

• Direct likelihood methods (ignoring penalty terms) lead
to sensible results.

• (Boootstrap) sampling distribution of tree MLE can be
simulated

• Penalty terms additive along branches, so highest AIC or
BIC scoring tree (forest) also available using a MWST
algorithm.

• Tree methods scale extremely well with both sample size
and number of variables;

• Pairwise marginal counts are sufficient statistics for the
tree problem (empirical covariance matrix in the
Gaussian case).

Note sufficiency holds despite parameter space very different
from open subset of Rk .
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Graphical lasso

Consider an undirected Gaussian graphical model and the
l1-penalized log-likelihood function

2`pen(K ) = log detK − tr(KW̄ )− κ||K ||1.

The penalty ||K ||1 =
∑

u,v |kuv | is essentially a convex
relaxation of the number of edges in the graph and
optimization of the penalized likelihood will typically lead to
several kuv = 0 and thus in effect estimate a particular graph.

This penalized likelihood can be maximized efficiently
(Banerjee et al., 2008) as implemented in the graphical lasso
(Friedman et al., 2008).

Beware: not scale-invariant!
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glasso for bodyfat

●Weight

●Knee

●Thigh

●Hip

●Abdomen

●Ankle ●Biceps

●Forearm

●Height

●Wrist

●Neck

●Chest

●Age

●BodyFat
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Optimizing the convex glasso problem
We shall maximize the penalized likelihood function

`(K ) = log det(K )− tr(W̄K )− κ||K ||1.

This has subgradient equation ∂`(K ) = 0, where

∂`(K ) = Σ− W̄ − κΓ

and Γ = sign(K ) where sign(kuv ) = 1 if kuv > 0,
sign(kuv ) = −1 if kuv < 0, and sign(kuv ) ∈ [−1, 1] if
kuv = 0.

Hence the glasso estimate Σ̌ of Σ satisfies

Σ̌ = W̄ + κΓ.

Compare to MLE
Σ̂ = W̄ + Γ∗

where γ∗uv = 0 whenever u ∼ v .
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Blocking the subgradient equation

Write the subgradient equation in block matrix form with
S = W̄ , the lower right corner being 1× 1 we get(

S11 s12
s>12 s22

)
−
(

Σ11 σ12
σ>12 σ22

)
+ κ

(
Γ11 γ12
γ>12 1

)
= 0.

Focusing on the upper right block of this equation we get

s12 − σ12 + κγ12 = 0.

Using the identity (Σ11)−1σ12 = −k−122 k12 = β and thus
sign(k12) = − sign(β) we can rewrite this equation as

Σ11β − s12 + κ sign(β) = 0.
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Lasso regression

The Lasso regression problem is

minimize (y − Zβ)>(y − Zβ)/2 + κ||β||1.

The subgradient equation for this problem becomes

Z>Zβ − Z>y + κ sign(β) = 0.

Compare this to the subgradient equation for the graphical
lasso

Σ11β − s12 + κ sign(β) = 0.

There is a simple iterative cyclic descent algorithm for solving
the first equation, and this can of course be used to solve the
second equation.
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Cyclic descent algorithm for graphical lasso
Define the soft threshold function

T (x , t) = sign(x)(|x | − t)+;

Input: Empirical covariance matrix S ; penalty parameter κ;

Output: Glasso estimate K̂κ; concentration graph Ĝκ.

1 Initialize Σ← S + κI ; βuv ← 0, u, v ∈ V .

2 Repeat for v ∈ V until convergence

1 For u ∈ V \ v until convergence:

βuv ← T
(
suv −

∑
w 6=v σuwβwv ; κ

)
/σvv ;

2 For u ∈ V \ {v} do σuv ←
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An alternative algorithm
This algorithm updates 2× 2 submatrices of K and resembles
the IPS algorithm but also in some sense Kruskal’s algorithm.

Consider the restricted convex optimization problem:

minimize − log det(K ) + tr(KS) + κ||K ||1
subject to kij = k∗ij for i 6= u or j 6= v .

Using Schur complements, the objective function becomes
equivalent to

− log det(Kcc − KcaK
−1
aa Kac) + tr(KccScc) + κ||Kcc ||1

where c = {u, v} and a = V \ {u, v}.
This problem is trivial to solve without iteration.

Iterating through edges in order of decreasing unexplained
correlation should give a very efficient algorithm.
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