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Overview of lectures

Lecture 1 Markov Properties and the Multivariate
Gaussian Distribution

Lecture 2 Likelihood Analysis of Gaussian Graphical
Models

Lecture 3 Gaussian Graphical Models with Additional
Restrictions; structure identification.

For reference, if nothing else is mentioned, see Lauritzen
(1996), Chapters 3 and 4.
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Independence

We recall that two random variables X and Y are
independent if

P(X ∈ A |Y = y) = P(X ∈ A)

or, equivalently, if

P{(X ∈ A) ∩ (Y ∈ B)} = P(X ∈ A)P(Y ∈ B).

For continuous variables the requirement is a factorization of
the joint density:

fXY (x , y) = fX (x)fY (y).

When X and Y are independent we write X ⊥⊥ Y .
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Formal definition

Random variables X and Y are conditionally independent
given the random variable Z if

L(X |Y ,Z ) = L(X |Z ).

We then write X ⊥⊥ Y |Z (or X ⊥⊥P Y |Z )

Intuitively: Knowing Z renders Y irrelevant for predicting X .

Factorisation of densities:

X ⊥⊥ Y |Z ⇐⇒ fXYZ (x , y , z)fZ (z) = fXZ (x , z)fYZ (y , z)

⇐⇒ ∃a, b : f (x , y , z) = a(x , z)b(y , z).
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Undirected graphical models
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For several variables, complex systems of conditional
independence can for example be described by undirected
graphs.

Then a set of variables A is conditionally independent of a
set B, given the values of a set of variables C , if C separates
A from B.

For example in picture above

1 ⊥⊥ {4, 7} | {2, 3}, {1, 2} ⊥⊥ 7 | {4, 5, 6}.
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Fundamental properties

For random variables X , Y , Z , and W it holds

(C1) If X ⊥⊥ Y |Z then Y ⊥⊥ X |Z ;

(C2) If X ⊥⊥ Y |Z and U = g(Y ), then X ⊥⊥ U |Z ;

(C3) If X ⊥⊥ Y |Z and U = g(Y ), then
X ⊥⊥ Y | (Z ,U);

(C4) If X ⊥⊥ Y |Z and X ⊥⊥W | (Y ,Z ), then
X ⊥⊥ (Y ,W ) |Z ;

If density w.r.t. product measure f (x , y , z ,w) > 0 also

(C5) If X ⊥⊥ Y | (Z ,W ) and X ⊥⊥ Z | (Y ,W ) then
X ⊥⊥ (Y ,Z ) |W .
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Conditional independence can be seen as encoding abstract
irrelevance: Knowing C , A is irrelevant for learning B,
(C1)–(C4) translate into:

(I1) If, knowing C , learning A is irrelevant for
learning B, then B is irrelevant for learning A;

(I2) If, knowing C , learning A is irrelevant for
learning B, then A is irrelevant for learning any
part D of B;

(I3) If, knowing C , learning A is irrelevant for
learning B, it remains irrelevant having learnt
any part D of B;

(I4) If, knowing C , learning A is irrelevant for
learning B and, having also learnt A, D remains
irrelevant for learning B, then both of A and D
are irrelevant for learning B.
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Semi-graphoid
An independence model (Studený, 2005) ⊥σ is a ternary
relation over subsets of a finite set V . It is a graphoid if for
all disjoint subsets A, B, C , D:

(S1) if A⊥σ B |C then B ⊥σ A |C (symmetry);

(S2) if A⊥σ (B ∪ D) |C then A⊥σ B |C and
A⊥σ D |C (decomposition);

(S3) if A⊥σ (B ∪ D) |C then A⊥σ B | (C ∪ D)
(weak union);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C ), then
A⊥σ (B ∪ D) |C (contraction);

(S5) if A⊥σ B | (C ∪ D) and A⊥σ C | (B ∪ D) then
A⊥σ (B ∪ C ) |D (intersection).

Semigraphoid if only (S1)–(S4). It is compositional if

(S6) if A⊥σ B |C and A⊥σ D |C then
A⊥σ (B ∪ D) |C (composition).
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Separation in undirected graphs

Let G = (V ,E ) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A,B,S of V , let A⊥G B | S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S .

Fact: The relation ⊥G on subsets of V is a compositional
graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such independence model.
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Probabilistic Independence Model

For a system V of labeled random variables Xv , v ∈ V , we
use

A ⊥⊥ B |C ⇐⇒ XA ⊥⊥ XB |XC ,

where XA = (Xv , v ∈ A) denotes the variables with labels in
A.

The properties (C1)–(C4) imply that ⊥⊥ satisfies the
semi-graphoid axioms and the graphoid axioms if the joint
density of the variables is strictly positive.

A regular multivariate Gaussian distribution defines a
compositional graphoid independence model, as we shall see
later.
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Geometric orthogonality
Let L, M, and N be linear subspaces of a Hilbert space H and

L ⊥ M |N ⇐⇒ (L	 N) ⊥ (M 	 N),

where L	 N = L ∩ N⊥.L and M are said to meet
orthogonally in N.

(O1) If L ⊥ M |N then M ⊥ L |N;

(O2) If L ⊥ M |N and U is a linear subspace of L,
then U ⊥ M |N;

(O3) If L ⊥ M |N and U is a linear subspace of M,
then L ⊥ M | (N + U);

(O4) If L ⊥ M |N and L ⊥ R | (M + N), then
L ⊥ (M + R) |N.

Intersection does not hold in general whereas composition
(S6) does.
Steffen Lauritzen — Markov Properties and the Multivariate Gaussian Distribution — Minikurs TUM 2016 — Lecture 1

Slide 11/42



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

Markov properties for undirected graphs

G = (V ,E ) simple undirected graph; An independence model
⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B | S =⇒ A⊥σ B | S .
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Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1⊥σ 5 | {2, 3, 4, 6, 7} and 4⊥σ 6 | {1, 2, 3, 5, 7}.
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Local Markov property
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Every variable is conditionally independent of the remaining,
given its neighbours.

For example, 5⊥σ {1, 4} | {2, 3, 6, 7} and
7⊥σ {1, 2, 3} | {4, 5, 6}.
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Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2, 3}, {4, 5, 6}, or {2, 5, 6}

For example, it follows that 1⊥σ 7 | {2, 5, 6} and
2⊥σ 6 | {3, 4, 5}.
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Structural relations among Markov properties

For any semigraphoid it holds that

(G) =⇒ (L) =⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) =⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥, when f (x) > 0.
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The multivariate Gaussian

A d-dimensional random vector X = (X1, . . . ,Xd) has a
multivariate Gaussian distribution or normal distribution on
Rd if there is a vector ξ ∈ Rd and a d × d matrix Σ such
that

λ>X ∼ N (λ>ξ, λ>Σλ) for all λ ∈ Rd . (1)

We then write X ∼ Nd(ξ,Σ).

Taking λ = ei or λ = ei + ej where ei is the unit vector with
i-th coordinate 1 and the remaining equal to zero yields:

Xi ∼ N (ξi , σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of
the distribution.
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The definition (1) makes sense if and only if λ>Σλ ≥ 0, i.e.
if Σ is positive semidefinite. Note that we have allowed
distributions with variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

md(λ) = E{eλ>X} = eλ
>ξ+λ>Σλ/2

where we have used that the univariate moment generating
function for N (µ, σ2) is

m1(t) = etµ+σ2t2/2

and let t = 1, µ = λ>ξ, and σ2 = λ>Σλ.

Thus a multivariate Gaussian distribution is determined by its
mean vector and covariance matrix.
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A simple example

Assume X> = (X1,X2,X3) with Xi independent and
Xi ∼ N (ξi , σ

2
i ). Then

λ>X = λ1X1 + λ2X2 + λ3X3 ∼ N (µ, τ2)

with

µ = λ>ξ = λ1ξ1 + λ2ξ2 + λ3ξ3, τ2 = λ2
1σ

2
1 + λ2

2σ
2
2 + λ2

3σ
2
3.

Hence X ∼ N3(ξ,Σ) with ξ> = (ξ1, ξ2, ξ3) and

Σ =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 .
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Density of multivariate Gaussian

If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the
distribution has density on Rd

f (x | ξ,Σ) = (2π)−d/2(detK )1/2e−(x−ξ)>K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the
distribution. Since a positive semidefinite matrix is positive
definite if and only if it is invertible, we then also say that Σ
is regular.

If X1, . . . ,Xd are independent and Xi ∼ N (ξi , σ
2
i ) their joint

density has the form (2) with Σ = diag(σ2
i ) and

K = Σ−1 = diag(1/σ2
i ).

Hence vectors of independent Gaussians are multivariate
Gaussian.
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A counterexample

The marginal distributions of a vector X can all be Gaussian
without the joint being multivariate Gaussian:

For example, let X1 ∼ N (0, 1), and define X2 as

X2 =

{
X1 if |X1| > c
−X1 otherwise.

Then, using the symmetry of the univariate Gausssian
distribution, X2 is also distributed as N (0, 1).
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Counterexample continued

The joint distribution is not Gaussian unless c = 0 since, for
example, Y = X1 + X2 satisfies

P(Y = 0) = P(X2 = −X1) = P(|X1| ≤ c) = Φ(c)− Φ(−c).

Note that for c = 0, the correlation ρ between X1 and X2 is
1 whereas for c =∞, ρ = −1.

It follows that there is a value of c so that X1 and X2 are
uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:

If X ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1 ⊥⊥ X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

To see this, just note that

λ>(X1 + X2) = λ>X1 + λ>X2

and use the univariate addition property.
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Linear transformations preserve multivariate normality:

If L is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = LX + b ∼ Nr (Lξ + b, LΣL>).

Again, just write

γ>Y = γ>(LX + b) = (L>γ)>X + γ>b

and use the corresponding univariate result.
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Marginal distributions

Partition X into into XA and XB , where XA ∈ RA and
XB ∈ RB with A ∪ B = V . Partition mean vector,
concentration and covariance matrix accordingly as

ξ =

(
ξA
ξB

)
, K =

(
KAA KAB

KBA KBB

)
, Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
.

Then, if X ∼ N (ξ,Σ) it holds that

XB ∼ Ns(ξB ,ΣBB).

This follows simply from the previous fact using the matrix

L = (0AB IB) .

with 0AB a matrix of zeros and IB the B × B identity matrix.
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Conditional distributions

If ΣBB is regular, it further holds that

XA |XB = xB ∼ NA(ξA|B ,ΣA|B),

where

ξA|B = ξA+ΣABΣ−1
BB(xB−ξB) and ΣA|B = ΣAA−ΣABΣ−1

BBΣBA.

In particular, ΣAB = 0 if and only if XA and XB are
independent.
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To see this, we simply calculate the conditional density.

f (xA | xB) ∝ fξ,Σ(xA, xB)

∝ exp
{
−(xA − ξA)>KAA(xA − ξA)/2− (xA − ξA)>KAB(xB − ξB)

}
.

The linear term involving xA has coefficient equal to

KAAξA − KAB(xA − ξB) = KAA

{
ξA − K−1

AAKAB(xB − ξB)
}
.

Using the matrix identities

K−1
AA = ΣAA − ΣABΣ−1

BBΣBA (3)

and
K−1
AAKAB = −ΣABΣ−1

BB , (4)
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we find

f (xA | xB) ∝ exp
{
−(xA − ξA|B)>KAA(xA − ξA|B)/2

}
and the result follows.

From the identities (3) and (4) it follows in particular that
then the conditional expectation and concentrations also can
be calculated as

ξA|B = ξA − K−1
AAKAB(xB − ξB) and KA|B = KAA.

Note that the marginal covariance is simply expressed in
terms of Σ whereas the conditional concentration is simply
expressed in terms of K .
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Further, since

ξA|B = ξA − K−1
AAKAB(xB − ξB) and KA|B = KAA,

XA and XB are independent if and only if KAB = 0, giving
KAB = 0 if and only if ΣAB = 0.

More generally, if we partition X into XA,XB ,XC , the
conditional concentration of XA∪B given XC = xC is

KA∪B|C =

(
KAA KAB

KBA KBB

)
,

so
XA ⊥⊥ XB |XC ⇐⇒ KAB = 0.

It follows that a Gaussian independence model is a
compositional graphoid.
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An example

Consider N3(0,Σ) with covariance matrix

Σ =

 1 1 1
1 2 1
1 1 2

 .

The concentration matrix is

K = Σ−1 =

 3 −1 −1
−1 1 0
−1 0 1

 .
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The marginal distribution of (X2,X3) has covariance and
concentration matrix

Σ23 =

(
2 1
1 2

)
, (Σ23)−1 =

1

3

(
2 −1
−1 2

)
.

The conditional distribution of (X1,X2) given X3 has
concentration and covariance matrix

K12 =

(
3 −1
−1 1

)
, Σ12|3 = (K12)−1 =

1

2

(
1 1
1 3

)
.

Similarly, V(X1 |X2,X3) = 1/k11 = 1/3, etc.
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Consider X = (Xv , v ∈ V ) ∼ NV (0,Σ) with Σ regular and
K = Σ−1.

The concentration matrix of the conditional distribution of
(Xα,Xβ) given XV \{α,β} is

K{α,β} =

(
kαα kαβ
kβα kββ

)
,

Hence
α ⊥⊥ β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus a regular Gaussian distribution is pairwise, local, and
globally Markov w.r.t. the graph G(K ) given by

α 6∼ β ⇐⇒ kαβ = 0.
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Gaussian graphical model

S(G) denotes the symmetric matrices A with aαβ = 0 unless
α ∼ β and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

Note that the density then factorizes as

log f (x) = constant− 1

2

∑
α∈V

kααx
2
α −

∑
{α,β}∈E

kαβxαxβ,

hence no interaction terms involve more than pairs..
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Mathematics marks

Examination marks of 88 students in 5 different
mathematical subjects. The empirical concentrations (on or
above diagonal) and partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics
Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45
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Graphical model for mathmarks

Mechanics

Vectors
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This analysis is from Whittaker (1990).

We have An, Stats ⊥⊥ Mech,Vec |Alg.
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Gaussian likelihoods
Consider the case where ξ = 0 and a sample
X 1 = x1, . . . ,X n = xn from a multivariate Gaussian
distribution Nd(0,Σ) with Σ regular. Using the expression
for the density, we get the likelihood function

L(K ) = (2π)−nd/2(detK )n/2e−
∑n

ν=1(xν)>Kxν/2

∝ (detK )n/2e−
∑n

ν=1 tr{Kxν(xν)>}/2

= (detK )n/2e− tr{K
∑n

ν=1 x
ν(xν)>}/2

= (detK )n/2e− tr(Kw)/2. (5)

where

W =
n∑
ν=1

X ν(X ν)>

is the matrix of sums of squares and products.
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Maximizing the likelihood
Writing the trace out

tr(KW ) =
∑
i

∑
j

kijWji

emphasizes that it is linear in both K and W and we can
recognize this as a linear and canonical exponential family
(Barndorff-Nielsen, 1978) with K as the canonical parameter
and −W /2 as the canonical sufficient statistic.

Thus, the likelihood equation becomes

E(−W /2) = −nΣ/2 = −w/2

since E(W ) = nΣ. Solving, we get

K̂−1 = Σ̂ = w/n.
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Rewriting the likelihood function as

log L(K ) =
n

2
log(detK )− tr(Kw)/2

we can of course also differentiate to find the maximum,
leading to the equation

∂

∂kij
log(detK ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(detK ) = K−1.

The latter can also be derived directly by writing out the
determinant, and it holds for any non-singular square matrix,
i.e. one which is not necessarily positive definite.
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Likelihood with restrictions

The likelihood function based on a sample of size n is

L(K ) ∝ (detK )n/2e− tr(Kw)/2,

where w is the (Wishart) matrix of sums of squares and
products and Σ−1 = K ∈ S+(G).

Define the matrices T u, u ∈ V ∪ E as those with elements

T u
ij =


1 if u ∈ V and i = j = u

1 if u ∈ E and u = {i , j}
0 otherwise.

;

then T u, u ∈ V ∪ E forms a basis for the linear space S(G)
of symmetric matrices over V which have zero entries ij
whenever i and j are non-adjacent in G.
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Further, as K ∈ S(G), we have

K =
∑
v∈V

kvT
v +

∑
e∈E

keT
e (6)

and hence

tr(Kw) =
∑
v∈V

kv tr(T vw) +
∑
e∈E

ke tr(T ew);

leading to the log-likelihood function

l(K ) = log L(K ) ∼ n

2
log(detK )− tr(Kw)/2

=
n

2
log(detK )

−
∑
v∈V

kv tr(T vw)/2 +
∑
e∈E

ke tr(T ew)/2.
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Hence we can identify the family as a (regular and canonical)
exponential family with − tr(T uW )/2, u ∈ V ∪ E as
canonical sufficient statistics.

The likelihood equations can be obtained from this fact or by
differentiation, combining the fact that

∂

∂ku
log det(K ) = tr(T uΣ)

with (6).

This eventually yields the likelihood equations

tr(T uw) = n tr(T uΣ), u ∈ V ∪ E .
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The likelihood equations

tr(T uw) = n tr(T uΣ), u ∈ V ∪ E .

can also be expressed as

nσ̂vv = wvv , nσ̂αβ = wαβ, v ∈ V , {α, β} ∈ E .

Remember the model restriction K = Σ−1 ∈ S+(G).

This ‘fits variances and covariances along nodes and edges in
G’ so we can write the equations as

nΣ̂cc = wcc for all cliques c ∈ C(G).

General theory of exponential families ensure the solution to
be unique, provided it exists.
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