## Ideals of Gaussian Graphical Models

### Seth Sullivant

North Carolina State University

October 25, 2019

Seth Sullivant (NCSU)

Ideals of Gaussian Graphical Models

October 25, 2019 1 / 20

- Let G = ([m], E) be an undirected graph.
- Consider the set

$$PD(G) = \{K \in PD_m : K_{ij} = 0 \text{ if } i \neq j \text{ and } i - j \notin E\}.$$

Let

$$\mathcal{M}_{G} = \{ \Sigma = K^{-1} : K \in \mathcal{PD}(G) \}.$$

 The set of covariance matrices M<sub>G</sub> are from the centered Gaussian graphical model associated to G: those distributions with density function

$$f(x|\Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{m/2}} \exp(-\frac{1}{2} x^T \Sigma^{-1} x)$$

- Unifying framework for many classes of multivariate statistical models
  - Markov models/Hidden Markov models
  - Ising model/Spatial Models
- Useful for discussion of conditional independence structures
- Uses:
  - Artificial Intelligence/Machine Learning
  - Causal Inference
  - Computational Biology

## Ideals of Gaussian Graphical Models

$$I_G = \mathcal{I}(\mathcal{M}_G) \subseteq \mathbb{R}[\sigma_{ij} : 1 \le i \le j \le m] = \mathbb{R}[\sigma]$$
  
=  $\langle f \in \mathbb{R}[\sigma] : f(\Sigma) = 0 \text{ for all } \Sigma \in \mathcal{M}_G \rangle$ 

#### Problem

Determine  $I_G$  for all graphs *G*. What are the generating sets and/or Gröbner bases of these ideals?

### Example



$$\Sigma^{-1} = \mathcal{K} = \begin{pmatrix} k_{11} & k_{12} & 0 & k_{14} \\ k_{12} & k_{22} & k_{23} & 0 \\ 0 & k_{23} & k_{33} & k_{34} \\ k_{14} & 0 & k_{34} & k_{44} \end{pmatrix}$$

$$V_{C_4} = \langle | \Sigma_{124,234} |, | \Sigma_{123,134} | \rangle$$

# **Conditional Independence Constraints**

### Definition

Let G = ([n], E) a graph and A, B, C be disjoint subsets of [n]. C separates A and B if every path from some  $a \in A$  to some  $b \in B$  passes through a  $c \in C$ .



#### Proposition

Let G be a graph and suppose that C separates A and B in G. Then for all  $\Sigma \in \mathcal{M}_G$ 

$$\operatorname{rank} \Sigma_{A\cup C, B\cup C} = \#C.$$

In particular all #C + 1 subdeterminants of  $\Sigma_{A \cup C, B \cup C}$  belong to  $I_G$ .

Seth Sullivant (NCSU)

### Definition

Let G = ([n], E) be a graph. Let  $CI_G \subseteq \mathbb{R}[\sigma]$  be the ideal generated by all #C + 1 subdeterminants of  $\Sigma_{A \cup C, B \cup C}$  where A, B, C range over all sets such that C separates A and B in G.  $CI_G$  is the conditional independence ideal of G.

- Always have  $CI_G \subseteq I_G$ .
- In fact,  $V(CI_G) \cap PD_m = V(I_G) \cap PD_m$ .

#### Question

Is it always true that  $CI_G = I_G$ ?

- The variety V(CI<sub>G</sub>) ∩ PSD<sub>n</sub> has extraneous solutions that correspond to SINGULAR multivariate Gaussians that satisfy the conditional independence constraints of G but are not limits of distributions that factor.
  - Using  $I_G$  removes these extraneous solutions.
- If we care about hidden variable models, the elimination  $CI_G \cap \mathbb{R}[\Sigma_A]$  potentially has higher dimensional solutions that are not in the model (projections of distributions outside of  $V(I_G) \cap PD_n$ .
  - Using  $I_G$  removes these bad higher dimensional components.
- Interesting connections to problems in classical algebraic geometry.

### Theorem (Geiger-Meek-Sturmfels(2006))

Let G be a graph and let  $I_G$  the vanishing ideal of the discrete graphical model and  $CI_G$  the conditional independence ideal. Then  $I_G = CI_G$  if and only if G is a chordal graph.

• A graph G is chordal if every cycle in G of length  $\geq$  4 has a chord.

Not Chordal Graph

Chordal Graph





Seth Sullivant (NCSU)

# The question

### Question

For which graphs G is  $CI_G = I_G$  for Gaussian graphical models?

### Conjecture

If  $C_n$  is an n cycle graph then  $CI_{C_n} = I_{C_n}$  is generated by degree 3 determinants.

### Proposition

The chordal graph 
$${f G}=\hat{K}_{2,5}$$
 has  ${f C}{f I}_{f G}
eq{f I}_{f G}.$ 



 $\sigma_{12}\sigma_{13}\sigma_{24}\sigma_{35}\sigma_{45} - \sigma_{12}\sigma_{13}\sigma_{25}\sigma_{34}\sigma_{45} - \sigma_{12}\sigma_{14}\sigma_{23}\sigma_{35}\sigma_{45} \\ + \sigma_{12}\sigma_{14}\sigma_{25}\sigma_{34}\sigma_{35} + \sigma_{12}\sigma_{15}\sigma_{23}\sigma_{34}\sigma_{45} - \sigma_{12}\sigma_{15}\sigma_{24}\sigma_{34}\sigma_{35} \\ + \sigma_{13}\sigma_{14}\sigma_{23}\sigma_{25}\sigma_{45} - \sigma_{13}\sigma_{14}\sigma_{24}\sigma_{25}\sigma_{35} - \sigma_{13}\sigma_{15}\sigma_{23}\sigma_{24}\sigma_{45}$ 

 $+\sigma_{13}\sigma_{15}\sigma_{24}\sigma_{25}\sigma_{34} - \sigma_{14}\sigma_{15}\sigma_{23}\sigma_{25}\sigma_{34} + \sigma_{14}\sigma_{15}\sigma_{23}\sigma_{24}\sigma_{35}$ 

$$\in \textit{I}_{G} \setminus \textit{CI}_{G}$$

# Fat Path Graphs

### Definition

A graph *G* is a fat path graph if, for every i < j with  $i - j \in E$ , and for all k, l such that  $i \le k < l \le j$  then  $k - l \in E$ .



#### Theorem (Fink-Rajchgot-S 2016)

If G is a fat path graph then  $I_G = CI_G$ .

- Fat path graphs are chordal graphs.
- Uses connection between (some instances of) gaussian graphical models and matrix Schubert varieties.

Seth Sullivant (NCSU)

# Gluing Graphs: Discrete Graphical Models

### Theorem (Geiger-Meek-Sturmfels(2006))

Let G be a graph and let  $I_G$  the vanishing ideal of the discrete graphical model and  $CI_G$  the conditional independence ideal. Then  $I_G = CI_G$  if and only if G is a chordal graph.

• Proof idea: Show that  $I_G = CI_G$  is preserved when doing decompositions of graphs.



- More generally, for reducible graphs generators of  $I_G$  can be obtained from  $I_{G_1}$  and  $I_{G_2}$  plus conditional independence conditions from the overlap.
- Can anything like this be true for Gaussian graphical models?
   Seth Sullivant (NCSU)
   Ideals of Gaussian Graphical Models
   October 25, 2019

11/20

## Gluing Graphs: Gaussians Graphical Models??

• If G is the k-clique sum of  $G_1$  and  $G_2$  is

 $I_G = \text{Lift}(I_{G_1}) + \text{Lift}(I_{G_2}) + k + 1$  minors from overlap?

- "Obvious" if *k* = 0.
- $G = \hat{K}_{2,5}$  shows that can't be true for  $k \ge 2$ .
- Sturmfels and Uhler (2009) asked if true of k = 1.

### Example (Misra-Sullivant(2019))

For the graph  $G = C_4 \# C_4$ ,  $I_G$  has a minimal generator of degree 4 that is not in  $CI_G$ .



### Conjecture (Sturmfels-Uhler(2010))

 $I_G$  is generated in degree 2 if and only G is a chordal graph that can be built by 1-clique sums of complete graphs. In this case  $I_G = CI_G$ .



### Theorem (Misra-Sullivant (2019))

The Sturmfels-Uhler conjecture is true.

## Theorem (Misra-Sullivant (2019))

 $I_G$  is generated in degree 2 if and only G is a chordal graph that can be built by 1-clique sums of complete graphs. In this case  $I_G = CI_G$ .



Proof idea:

- All these 2  $\times$  2 minors means  $I_G$  must be toric in this case.
- These chordal 1-sum graphs are precisely the geodesic graphs.
- Use the combinatorics of the toric structure to analyze ideal.

### Proposition

A graph G is a 1 clique sum of complete graphs if and only if for every connected induced subgraph H of G and every pair of vertices i j in H, there is a unique locally shortest path between i and j in H.



• For this reason we call 1 clique sum of complete graphs geodesic graphs.

Let G = ([n], E) be a geodesic graph.

- Let  $i \leftrightarrow j$  denote the unique shortest path between *i* and *j* in *G*.
- For each  $i \in [n]$  introduce a parameter  $a_i$ .
- For each  $i \rightarrow j \in E$  introduce a parameter  $\lambda_{ij}$ .
- Consider the shortest path parametrization

$$\phi(\boldsymbol{a},\lambda) = (\sigma_{ij})_{1 \le i \le j \le n}$$

where

$$\sigma_{ij} = a_i a_j \prod_{i'-j' \in i \leftrightarrow j} \lambda_{i'j'}$$

• Let  $SP_G = \mathcal{I}(\operatorname{im}(\phi)) \subseteq \mathbb{R}[\sigma]$ .

October 25, 2019 16 / 20

## Example



$$\sigma_{17} = a_1 a_7 \lambda_{13} \lambda_{34} \lambda_{47} \qquad \sigma_{26} = a_2 a_6 \lambda_{23} \lambda_{34} \lambda_{46}$$

 $\sigma_{16} = a_1 a_6 \lambda_{13} \lambda_{34} \lambda_{46} \qquad \sigma_{27} = a_2 a_7 \lambda_{23} \lambda_{34} \lambda_{47}$ 

$$\sigma_{17}\sigma_{26} - \sigma_{16}\sigma_{27} \in SP_G$$

### Theorem (Misra-Sullivant (2019))

 $I_G$  is generated in degree 2 if and only G is a chordal graph that can be built by 1-clique sums of complete graphs. In this case  $I_G = CI_G$ .

- Find a quadratic Gröbner basis of SP<sub>G</sub>.
  - Depends on combinatorics of path systems in geodesic graphs.
- Show that  $SP_G = CI_G$ , all the quadratic generators of come from conditional independence statement.
- Since  $SP_G$  is prime, has the same dimension as  $I_G$ , and  $SP_G = CI_G \subseteq I_G$ , these ideals must be equal.

- The vanishing ideals of undirected Gaussian graphical models seem difficult to describe.
- When are these ideals generated by the conditional independence constraints?
- True in the case of 1-clique sums of complete graphs.
- Other cases: Fat Path Graphs (Fink-Rajchgot-Sullivant (2016))
- What about non-determinantal constraints?

 $\sigma_{12}\sigma_{13}\sigma_{24}\sigma_{35}\sigma_{45} - \sigma_{12}\sigma_{13}\sigma_{25}\sigma_{34}\sigma_{45} - \sigma_{12}\sigma_{14}\sigma_{23}\sigma_{35}\sigma_{45}$ 

 $+\sigma_{12}\sigma_{14}\sigma_{25}\sigma_{34}\sigma_{35} + \sigma_{12}\sigma_{15}\sigma_{23}\sigma_{34}\sigma_{45} - \sigma_{12}\sigma_{15}\sigma_{24}\sigma_{34}\sigma_{35}$ 

 $+\sigma_{13}\sigma_{14}\sigma_{23}\sigma_{25}\sigma_{45} - \sigma_{13}\sigma_{14}\sigma_{24}\sigma_{25}\sigma_{35} - \sigma_{13}\sigma_{15}\sigma_{23}\sigma_{24}\sigma_{45}$ 

 $+\sigma_{13}\sigma_{15}\sigma_{24}\sigma_{25}\sigma_{34} - \sigma_{14}\sigma_{15}\sigma_{23}\sigma_{25}\sigma_{34} + \sigma_{14}\sigma_{15}\sigma_{23}\sigma_{24}\sigma_{35}$ 



A. Fink, J. Rajchgot, S. Sullivant. Matrix Schubert varieties and Gaussian conditional independence models. *J. Algebraic Combin.* 44 (2016), no. 4, 1009–1046.

D. Geiger, C. Meek, B. Sturmfels. On the toric algebra of graphical models. Ann. Statist. 34 (2006), no. 3, 1463–1492.

B. Sturmfels and C. Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. *Ann. Inst. Statist. Math.* **62** (2010), no. 4, 603–638.

S. Sullivant. Algebraic geometry of Gaussian Bayesian networks. *Adv. in Appl. Math.* **40** (2008), no. 4, 482–513. 0704.0918

S. Sullivant, K. Talaska and J. Draisma. Trek separation for Gaussian graphical models. *Annals of Statistics* **38** no.3 (2010) **1665-1685** 0812.1938