Ideals of Gaussian Graphical Models

Seth Sullivant

North Carolina State University

October 25, 2019

Gaussian Graphical Models

- Let $G=([m], E)$ be an undirected graph.
- Consider the set

$$
P D(G)=\left\{K \in P D_{m}: K_{i j}=0 \text { if } i \neq j \text { and } i-j \notin E\right\} .
$$

- Let

$$
\mathcal{M}_{G}=\left\{\Sigma=K^{-1}: K \in P D(G)\right\}
$$

- The set of covariance matrices \mathcal{M}_{G} are from the centered Gaussian graphical model associated to G : those distributions with density function

$$
f(x \mid \Sigma)=\frac{1}{|\Sigma|^{1 / 2}(2 \pi)^{m / 2}} \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right)
$$

Uses of Graphical Models

- Unifying framework for many classes of multivariate statistical models
- Markov models/Hidden Markov models
- Ising model/Spatial Models
- Useful for discussion of conditional independence structures
- Uses:
- Artificial Intelligence/Machine Learning
- Causal Inference
- Computational Biology

Ideals of Gaussian Graphical Models

$$
\begin{aligned}
I_{G} & =\mathcal{I}\left(\mathcal{M}_{G}\right) \subseteq \mathbb{R}\left[\sigma_{i j}: 1 \leq i \leq j \leq m\right]=\mathbb{R}[\sigma] \\
& =\left\langle f \in \mathbb{R}[\sigma]: f(\Sigma)=0 \text { for all } \Sigma \in \mathcal{M}_{G}\right\rangle
\end{aligned}
$$

Problem

Determine I_{G} for all graphs G. What are the generating sets and/or Gröbner bases of these ideals?

Example

$$
\begin{gathered}
\Sigma^{-1}=K=\left(\begin{array}{cccc}
k_{11} & k_{12} & 0 & k_{14} \\
k_{12} & k_{22} & k_{23} & 0 \\
0 & k_{23} & k_{33} & k_{34} \\
k_{14} & 0 & k_{34} & k_{44}
\end{array}\right) \\
I_{C_{4}}=\langle | \Sigma_{124,234}\left|,\left|\Sigma_{123,134}\right|\right\rangle
\end{gathered}
$$

Conditional Independence Constraints

Definition

Let $G=([n], E)$ a graph and A, B, C be disjoint subsets of $[n] . C$ separates A and B if every path from some $a \in A$ to some $b \in B$ passes through a $c \in C$.

$\{2,4\}$ separates $\{1\}$ from $\{3\}$.

Proposition

Let G be a graph and suppose that C separates A and B in G. Then for all $\Sigma \in \mathcal{M}_{G}$

$$
\operatorname{rank} \Sigma_{A \cup C, B \cup C}=\# C
$$

In particular all $\# C+1$ subdeterminants of $\Sigma_{A \cup C, B \cup C}$ belong to I_{G}.

Conditional Independence Ideal

Definition

Let $G=([n], E)$ be a graph. Let $C I_{G} \subseteq \mathbb{R}[\sigma]$ be the ideal generated by all $\# C+1$ subdeterminants of $\Sigma_{A \cup C, B \cup C}$ where A, B, C range over all sets such that C separates A and B in G.
$C I_{G}$ is the conditional independence ideal of G.

- Always have $C I_{G} \subseteq I_{G}$.
- In fact, $V\left(C I_{G}\right) \cap P D_{m}=V\left(I_{G}\right) \cap P D_{m}$.

Question

Is it always true that $C I_{G}=I_{G}$?

$$
C I_{C_{4}}=I_{C_{4}}=\langle | \Sigma_{124,234}\left|,\left|\Sigma_{123,134}\right|\right\rangle
$$

Why is I_{G} interesting?

- The variety $V\left(C I_{G}\right) \cap P S D_{n}$ has extraneous solutions that correspond to SINGULAR multivariate Gaussians that satisfy the conditional independence constraints of G but are not limits of distributions that factor.
- Using I_{G} removes these extraneous solutions.
- If we care about hidden variable models, the elimination $C l_{G} \cap \mathbb{R}\left[\Sigma_{A}\right]$ potentially has higher dimensional solutions that are not in the model (projections of distributions outside of $V\left(I_{G}\right) \cap P D_{n}$.
- Using I_{G} removes these bad higher dimensional components.
- Interesting connections to problems in classical algebraic geometry.

For Discrete Random Variables

Theorem (Geiger-Meek-Sturmfels(2006))

Let G be a graph and let I_{G} the vanishing ideal of the discrete graphical model and Cl_{G} the conditional independence ideal. Then $\mathrm{I}_{\mathrm{G}}=\mathrm{Cl}_{G}$ if and only if G is a chordal graph.

- A graph G is chordal if every cycle in G of length ≥ 4 has a chord.

Not Chordal Graph

Chordal Graph

The question

Question

For which graphs G is $C I_{G}=I_{G}$ for Gaussian graphical models?

Conjecture

If C_{n} is an n cycle graph then $C I_{C_{n}}=I_{C_{n}}$ is generated by degree 3 determinants.

Proposition

The chordal graph $G=\hat{K}_{2,5}$ has $\mathrm{Cl}_{G} \neq I_{G}$.

$$
\begin{gathered}
\quad \sigma_{12} \sigma_{13} \sigma_{24} \sigma_{35} \sigma_{45}-\sigma_{12} \sigma_{13} \sigma_{25} \sigma_{34} \sigma_{45}-\sigma_{12} \sigma_{14} \sigma_{23} \sigma_{35} \sigma_{45} \\
+\sigma_{12} \sigma_{14} \sigma_{25} \sigma_{34} \sigma_{35}+\sigma_{12} \sigma_{15} \sigma_{23} \sigma_{34} \sigma_{45}-\sigma_{12} \sigma_{15} \sigma_{24} \sigma_{34} \sigma_{35} \\
+\sigma_{13} \sigma_{14} \sigma_{23} \sigma_{25} \sigma_{45}-\sigma_{13} \sigma_{14} \sigma_{24} \sigma_{25} \sigma_{35}-\sigma_{13} \sigma_{15} \sigma_{23} \sigma_{24} \sigma_{45} \\
+\sigma_{13} \sigma_{15} \sigma_{24} \sigma_{25} \sigma_{34}-\sigma_{14} \sigma_{15} \sigma_{23} \sigma_{25} \sigma_{34}+\sigma_{14} \sigma_{15} \sigma_{23} \sigma_{24} \sigma_{35} \\
\in I_{G} \backslash C l_{G}
\end{gathered}
$$

Fat Path Graphs

Definition

A graph G is a fat path graph if, for every $i<j$ with $i-j \in E$, and for all k, I such that $i \leq k<I \leq j$ then $k-I \in E$.

Theorem (Fink-Rajchgot-S 2016)

If G is a fat path graph then $I_{G}=C I_{G}$.

- Fat path graphs are chordal graphs.
- Uses connection between (some instances of) gaussian graphical models and matrix Schubert varieties.

Gluing Graphs: Discrete Graphical Models

Theorem (Geiger-Meek-Sturmfels(2006))

Let G be a graph and let I_{G} the vanishing ideal of the discrete graphical model and Cl_{G} the conditional independence ideal. Then $I_{G}=\mathrm{Cl}_{G}$ if and only if G is a chordal graph.

- Proof idea: Show that $I_{G}=C I_{G}$ is preserved when doing decompositions of graphs.

- More generally, for reducible graphs generators of I_{G} can be obtained from $I_{G_{1}}$ and $I_{G_{2}}$ plus conditional independence conditions from the overlap.
- Can anything like this be true for Gaussian graphical models?

Gluing Graphs: Gaussians Graphical Models??

- If G is the k-clique sum of G_{1} and G_{2} is

$$
I_{G}=\operatorname{Lift}\left(I_{G_{1}}\right)+\operatorname{Lift}\left(I_{G_{2}}\right)+k+1 \text { minors from overlap? }
$$

- "Obvious" if $k=0$.
- $G=\hat{K}_{2,5}$ shows that can't be true for $k \geq 2$.
- Sturmfels and Uhler (2009) asked if true of $k=1$.

Example (Misra-Sullivant(2019))

For the graph $G=C_{4} \# C_{4}, I_{G}$ has a minimal generator of degree 4 that is not in Cl_{G}.

Does anything work out nicely for ideals of GGMs?!?

Conjecture (Sturmfels-Uhler(2010))

I_{G} is generated in degree 2 if and only G is a chordal graph that can be built by 1 -clique sums of complete graphs. In this case $I_{G}=C I_{G}$.

Theorem (Misra-Sullivant (2019))

The Sturmfels-Uhler conjecture is true.

Chordal Graphs that are 1-clique Sums

Theorem (Misra-Sullivant (2019))

I_{G} is generated in degree 2 if and only G is a chordal graph that can be built by 1-clique sums of complete graphs. In this case $I_{G}=C I_{G}$.

Proof idea:

- All these 2×2 minors means I_{G} must be toric in this case.
- These chordal 1-sum graphs are precisely the geodesic graphs.
- Use the combinatorics of the toric structure to analyze ideal.

The Shortest Path Map

Proposition

A graph G is a 1 clique sum of complete graphs if and only if for every connected induced subgraph H of G and every pair of vertices $i j$ in H, there is a unique locally shortest path between i and j in H.

- For this reason we call 1 clique sum of complete graphs geodesic graphs.

Shortest Path Map

Let $G=([n], E)$ be a geodesic graph.

- Let $i \leftrightarrow j$ denote the unique shortest path between i and j in G.
- For each $i \in[n]$ introduce a parameter a_{i}.
- For each $i \rightarrow j \in E$ introduce a parameter $\lambda_{i j}$.
- Consider the shortest path parametrization

$$
\phi(a, \lambda)=\left(\sigma_{i j}\right)_{1 \leq i \leq j \leq n}
$$

where

$$
\sigma_{i j}=a_{i} a_{j} \prod_{i^{\prime}-j^{\prime} \in i \leftrightarrow j} \lambda_{i^{\prime} j^{\prime}}
$$

- Let $S P_{G}=\mathcal{I}(\operatorname{im}(\phi)) \subseteq \mathbb{R}[\sigma]$.

Example

$$
\begin{gathered}
\sigma_{17}=a_{1} a_{7} \lambda_{13} \lambda_{34} \lambda_{47} \quad \sigma_{26}=a_{2} a_{6} \lambda_{23} \lambda_{34} \lambda_{46} \\
\sigma_{16}=a_{1} a_{6} \lambda_{13} \lambda_{34} \lambda_{46} \quad \sigma_{27}=a_{2} a_{7} \lambda_{23} \lambda_{34} \lambda_{47} \\
\sigma_{17} \sigma_{26}-\sigma_{16} \sigma_{27} \in S P_{G}
\end{gathered}
$$

Proof Sketch

Theorem (Misra-Sullivant (2019))

I_{G} is generated in degree 2 if and only G is a chordal graph that can be built by 1-clique sums of complete graphs. In this case $I_{G}=C I_{G}$.

- Find a quadratic Gröbner basis of $S P_{G}$.
- Depends on combinatorics of path systems in geodesic graphs.
- Show that $S P_{G}=C I_{G}$, all the quadratic generators of come from conditional independence statement.
- Since $S P_{G}$ is prime, has the same dimension as I_{G}, and $S P_{G}=C I_{G} \subseteq I_{G}$, these ideals must be equal.

Summary

- The vanishing ideals of undirected Gaussian graphical models seem difficult to describe.
- When are these ideals generated by the conditional independence constraints?
- True in the case of 1-clique sums of complete graphs.
- Other cases: Fat Path Graphs (Fink-Rajchgot-Sullivant (2016))
- What about non-determinantal constraints?

$$
\begin{aligned}
& \sigma_{12} \sigma_{13} \sigma_{24} \sigma_{35} \sigma_{45}-\sigma_{12} \sigma_{13} \sigma_{25} \sigma_{34} \sigma_{45}-\sigma_{12} \sigma_{14} \sigma_{23} \sigma_{35} \sigma_{45} \\
+ & \sigma_{12} \sigma_{14} \sigma_{25} \sigma_{34} \sigma_{35}+\sigma_{12} \sigma_{15} \sigma_{23} \sigma_{34} \sigma_{45}-\sigma_{12} \sigma_{15} \sigma_{24} \sigma_{34} \sigma_{35} \\
+ & \sigma_{13} \sigma_{14} \sigma_{23} \sigma_{25} \sigma_{45}-\sigma_{13} \sigma_{14} \sigma_{24} \sigma_{25} \sigma_{35}-\sigma_{13} \sigma_{15} \sigma_{23} \sigma_{24} \sigma_{45} \\
+ & \sigma_{13} \sigma_{15} \sigma_{24} \sigma_{25} \sigma_{34}-\sigma_{14} \sigma_{15} \sigma_{23} \sigma_{25} \sigma_{34}+\sigma_{14} \sigma_{15} \sigma_{23} \sigma_{24} \sigma_{35}
\end{aligned}
$$

References

A. Fink, J. Rajchgot, S. Sullivant. Matrix Schubert varieties and Gaussian conditional independence models. J. Algebraic Combin. 44 (2016), no. 4, 1009-1046.
D. Geiger, C. Meek, B. Sturmfels. On the toric algebra of graphical models. Ann. Statist. 34 (2006), no. 3, 1463-1492.
B. Sturmfels and C. Uhler. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry. Ann. Inst. Statist. Math. 62 (2010), no. 4, 603-638.
S. Sullivant. Algebraic geometry of Gaussian Bayesian networks. Adv. in Appl. Math. 40 (2008), no. 4, 482-513. 0704.0918
S. Sullivant, K. Talaska and J. Draisma. Trek separation for Gaussian graphical models. Annals of Statistics 38 no. 3 (2010) 1665-1685 0812.1938

