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Graphical and hierarchical models

Undirected graphical models
Let G = (V, E) be an undirected graph, with V a set of finite r.v.s.
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Definition (Parametric)
The graphical model EG is the set of all probability distributions of
the form

P(x1, . . . , xn) =
∏

C={i1,...,ik}∈C(G)

φC(xi1 , . . . , xik ),

where φC is a positive function and C(G) is the set of cliques of G
(i.e. the complete subgraphs).
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Graphical and hierarchical models

Undirected graphical models
Let G = (V, E) be an undirected graph, with V a set of finite r.v.s.
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Definition (Implicit)
The graphical model EG is the set of all probability distributions of
full support such that

XV1 ⊥⊥ XV2

∣∣∣XV3 whenever V3 separates V1 and V2.

(Equivalence: Hammersley-Clifford theorem)
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Graphical and hierarchical models

Loglinear hierarchical models
Let ∆ ⊆ 2V be a simplicial complex, with V a set of finite r.v.s.
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Definition (Parametric)
The hierarchical model E∆ is the set of all probability distributions of
the form P(x1, . . . , xn) =

∏
C={i1,...,ik}∈∆

φC(xi1 , . . . , xik ),

where φC is a positive function.
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Graphical and hierarchical models

Loglinear hierarchical models
Let ∆ ⊆ 2V be a simplicial complex, with V a set of finite r.v.s.
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Idea
G / ∆ represents the “interaction”/“dependency” structure.

The random variables can be understood by looking at small
neighbourhoods within G / ∆.
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Graphical and hierarchical models

The exponential parametrization

(Loglinear) hierarchical models are exponential families:

Let d1, . . . , dn be the cardinalities of the r.v.s.

Consider n-tensors u ∈ Rd1×···×dn .

For each C ∈ ∆ let tC(u) be the C-marginal of u.

Let A∆ be the matrix that computes all C-marginals tC(u) for
C ∈ ∆ (“sufficient statistics”/“moment map”).

Then E∆ consists of the distributions of the form

P(x1, . . . , xn) =
1
Zθ

exp
(
θtA∆;x1,...,xn

)
,

where

θt is a vector of parameters;

A∆;x1,...,xn is the column of AG corresponding to x1, . . . , xn.
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Graphical and hierarchical models

The marginal polytope

Definition
The convex hull of the columns of A∆ is the marginal polytope P∆.

The marginal polytope answers the question:
Which combinations of C-marginals are compatible?

Marginal polytopes are related to cut polytopes.
(cut polytopes max cut problem NP completeness)

The moment map µ : P 7→ A∆.P induces a bijection E∆ � P∆.

If t are the marginals of the empirical distribution, then µ−1(t)
is the (generalized) MLE.
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Graphical and hierarchical models

Example: Two independent binary variables

∆ = • •

A∆ =


00
1

01
1

10
0

11
0

0 0 1 1
1 0 1 0
0 1 0 1
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Graphical and hierarchical models

The support of the GMLE

If t are the marginals of the empirical distribution, then µ−1(t)
is the (generalized) MLE.
The support of the GMLE corresponds to the face F of P∆ in
which t lies:

Denote by a∆,x the columns of A∆.
Then supp(µ−1(t)) = {x ∈ X : a∆,x ∈ F}.
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Graphical and hierarchical models

The support of the GMLE

If t are the marginals of the empirical distribution, then µ−1(t)
is the (generalized) MLE.
The support of the GMLE corresponds to the face F of P∆ in
which t lies:

Denote by a∆,x the columns of A∆.
Then supp(µ−1(t)) = {x ∈ X : a∆,x ∈ F}.

Interpretation of the support
A support that is not full may indicate:

1. structural zeros? negligeable probabilities?

2. insufficient data?

If supp(µ−1(t)) is not full, it highlights peculiarities of the data that are
important with respect to the model.
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Faces of marginal polytopes

Prominent faces of marginal polytopes

Marginal faces
For any S ∈ ∆ and xS ∈ ×i∈S Xi, the inequality tS ;xS ≥ 0 is valid.

Lemma
tS ;xS ≥ 0 defines a facet if and only if S is a clique in ∆.

Cycle faces
Every cycle in ∆ contributes inequalities, the cycle inequalities. In
the easiest case of a binary cycle x1, x2, x3:

t{1,3};(0,0) ≤ t{1,2};(0,0) + t{2,3};(1,0)

(Proof: If t{1,3};(0,0)(ax) = 1, then either t{1,2};(0,0)(ax) = 1 or t{1,3};(1,0)(ax) = 1.)
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Faces of marginal polytopes

The role of marginal and cycle facets

If ∆ is a cycle, all facets are either marginal or cycle facets.
If all variables are binary:

If |S | ≤ 2 for all S ∈ ∆1, then all facets are either marginal or
cycle facets if and only if ∆ has no K4-minor.
For graphs with |V | ≤ 5, all facets of PG arise from marginal
and cycle inequalities, using:

“pyramid construction:” and “thickening:”

4
∼

The same is true for the majority of all graphs on six nodes.

1I.e. P∆ is a cut polytope.
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Faces of marginal polytopes

Reducible simplicial complexes

Definition
∆ is reducible if there exist V1,V2 ⊂ V that satisfy:

1. V \ V1 , ∅, V \ V2 , ∅ and V = V1 ∪ V2.

2. ∆ = ∆|V1 ∪ ∆|V2 .

3. (V1 ∩ V2) ∈ ∆; i.e., the separator is complete.

If ∆ = ∆|V1 ∪ ∆|V2 is reducible, almost any statistical or
mathematical question (about E∆ or P∆) can be answered by
looking at ∆|V1 and ∆|V2 separately.

Concerning P∆:

Lemma (Erikson, Fienberg, Rinaldo, Sullivant 2006)
If ∆ = ∆|V1 ∪ ∆|V2 is reducible, then any facet-defining inequality of
P∆ is a facet defining inequality of either P∆|V1

or P∆|V2
.
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Faces of marginal polytopes

The simplicial complex of a facet

Sub-complexes ∆′ ⊆ ∆ provide valid inequalities of P∆.

Conversely, any facet F belongs to a sub-complex ∆(F).

Lemma
The complex ∆(F) of a facet F is irreducible.

(If ∆ = ∆|V1 ∪ ∆|V2 is reducible, then ∆(F) ⊆ ∆|V1 or ∆(F) ⊆ ∆|V2 .)

Questions:
Which sub-complexes ∆′ arise in this way?

Which facets of P∆′ contribute facet defining inequalities
of P∆?
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Finding faces on polytopes

Finding faces on polytopes

Problem
Given a point t inside a polytope P, determine the face Ft of t in P!

Approaches:

1. Compute the face lattice of P.

2. Use linear programming.
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Finding faces on polytopes

Finding faces on polytopes

Problem
Given a point t inside a polytope P, determine the face Ft of t in P!

Approaches:

1. Compute the face lattice of P.

2. Use linear programming.

Due to the relation to cut polytopes, no general easy algorithm can
be expected for marginal polytopes.

3. Wang, Rauh and Massam (2019) propose inner and outer
approximations of the form

conv
{
ax : x ∈ F1

}
⊆ Ft ⊆ conv

{
ax : x ∈ F2

}
.
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Finding faces on polytopes

Approximating faces of marginal polytopes

Observation
If ∆1 ⊆ ∆2, any inequality for P∆1 also holds for P∆2 .

1. Outer approximation F2 ⊇ Ft: look at sub-complex of ∆.

Examples: Induced sub-complexes on few vertices, small
neighbourhoods, etc.

2. Inner approximation Ft ⊆ F1: look at super-complexes of ∆.

Examples: Adding edges in order to complete separators
leads to simpler marginal polytopes.

[see Wang, Rauh, Massam (Ann. Stat. 2019)]
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Finding faces on polytopes

The inner approximation in detail

∆1 ∆2 → ∆̃1 ∆̃2

1. Find a small, almost-complete separator S ⊂ V.

2. Complete the separator: Let ∆̃ = ∆ ∪ {(i, j) : i, j ∈ S }.

3. Lift t to t̃, by choosing a compatible S -marginal.

4. Compute the face Ft̃ of P∆̃.

5. The approximation is:

F1 = conv
{
ax : ãx ∈ Ft̃

}
.
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Finding faces on polytopes

Example I: The 4 × 4-grid

For each sample size, 1000 samples were generated from the
model (parameters ∼ N(0, I)).

Outer approximation: A covering using four 3 × 3-grids

Inner approx.: Use horizontal, vertical and diagonal
separators.

sample size MLE does not exist F1 = Ft F2 = Ft

10 100.0% 97.7% 100.0%
50 89.5% 100.0% 100.0%

100 71.0% 100.0% 100.0%
150 52.0% 100.0% 100.0%
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Finding faces on polytopes

Example II: The 5 × 10-grid

For each sample size, 100 samples were generated uniformly.
Outer approximation: A covering using four 5 × 3-grids
Inner approx.: Use parallel families of vertical separators

sample size F2 , P F1 = F2

50 100.0% 94.3%
100 100.0% 82.5%
150 99.9% 76.5%
200 99.6% 81.2%
300 96.4% 87.7%
400 92.9% 91.5%
500 84.8% 93.9%

1000 44.7% 99.9%
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Finding faces on polytopes

Example III: US Senate voting data (2015)

King

Sanders

Blumenthal

Booker

Brown

Cantwell
Cardin

Coons

Durbin

Feinstein

Gillibrand

Heinrich

Hirono

Markey

Menéndez

Merkley

Mikulski

Murphy
Murray

Nelson

Peters

Reed

Schumer

Shaheen
Udall

Warren

Whitehouse

Wyden

Baldwin

Bennet

BoxerCarper

Casey

Franken

Kaine

Klobuchar

Leahy

McCaskill

Reid

Schatz

Stabenow

Tester

Warner

Donnelly

Heitkamp

Manchin

Barrasso

Blunt

Boozman

Cassidy

CochranCornyn

Crapo

Daines

Ernst

Fischer

Hatch

Hoeven

Inhofe

Moran

Risch

Roberts

Rounds

Sasse

Tillis

Wicker

Alexander

Burr

Capito

Coats

Corker

Cotton

Enzi

Flake

Gardner

Grassley

Isakson

Johnson

Lankford
Lee

McCain

McConnell

Perdue

Sessions

Scott

Shelby

Sullivan
Toomey

Thune
Ayotte

Collins

Cruz

Graham

Heller

Kirk

Murkowski

Paul

Portman

Rubio

Vitter

Legend:
Democrat
Republican
Independent

Facets:
W. = yea⇒ G. = yea
R. = yea⇒ H. = yea

(W. = Warren,

G. = Gillibrand,

R. = Reed,

H. = Hirono)
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Finding faces on polytopes

Size of sub-complexes and facets

Question:
Do large sub-complexes give smaller facets?

Exception: Pyramids

(e.g. marginal faces)

Positive example: Cycle facets.

Fraction of vertices ax contained in:
an N-cycle-facet: O(c−N

1 )
an N-marginal facet: 1 − O(c−N

2 ).
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Finding faces on polytopes

Generalization: Approximating faces of polytopes

Linear pre-images of faces are faces:

1. To find an outer approximation: Look at linear projections of P.

2. To find an inner approximation: Look at linear liftings of P.

For details, see Wang, Rauh, Massam (Ann. Stat. 2019)
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Finding faces on polytopes

Summary

Marginal polytopes contain combinatorial information about
discrete undirected graphical / hierarchical models.

Faces of marginal polytopes correspond to subgraphs.

Smaller subgraphs tend to be more important.

This allows to efficiently approximate faces.

References:

N. Wang, J. Rauh, H. Massam
Approximating faces of marginal polytopes in discrete
hierarchical models.
Annals of Statistics 47 (3), 2019.
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