Marginal faces of marginal polytopes

Johannes Rauh

Max Planck Institute for Mathematics in the Sciences

Graphical Models Oktoberfest 2019 TU München

Graphical and hierarchical models

Faces of marginal polytopes

Finding faces on polytopes

Undirected graphical models

Let G = (V, E) be an *undirected* graph, with V a set of *finite* r.v.s.

Definition (Parametric)

The *graphical model* \mathcal{E}_G is the set of all probability distributions of the form

$$P(x_1,...,x_n) = \prod_{C = \{i_1,...,i_k\} \in C(G)} \phi_C(x_{i_1},...,x_{i_k}),$$

where ϕ_C is a *positive* function and C(G) is the set of *cliques* of *G* (i.e. the complete subgraphs).

Undirected graphical models

Let G = (V, E) be an *undirected* graph, with V a set of *finite* r.v.s.

Definition (Implicit)

The graphical model \mathcal{E}_G is the set of all probability distributions of *full support* such that

 $X_{V_1} \perp X_{V_2} | X_{V_3}$ whenever V_3 separates V_1 and V_2 .

(Equivalence: Hammersley-Clifford theorem)

Loglinear hierarchical models

Let $\Delta \subseteq 2^V$ be a simplicial complex, with V a set of *finite* r.v.s.

Definition (Parametric)

The *hierarchical model* \mathcal{E}_{Δ} is the set of all probability distributions of the form $P(x_1, \ldots, x_n) = \prod \phi_C(x_{i_1}, \ldots, x_{i_k}),$

$$C = \{i_1, \dots, i_k\} \in \Delta$$

where ϕ_C is a *positive* function.

Loglinear hierarchical models

Let $\Delta \subseteq 2^V$ be a simplicial complex, with V a set of *finite* r.v.s.

Idea

- G / Δ represents the "interaction"/"dependency" structure.
- The random variables can be understood by looking at small neighbourhoods within G / Δ.

The exponential parametrization

(Loglinear) hierarchical models are exponential families:

- Let d_1, \ldots, d_n be the cardinalities of the r.v.s.
- Consider *n*-tensors $u \in \mathbb{R}^{d_1 \times \cdots \times d_n}$.
- For each $C \in \Delta$ let $t_C(u)$ be the *C*-marginal of u.
- Let A_{Δ} be the matrix that computes all *C*-marginals $t_C(u)$ for $C \in \Delta$ ("sufficient statistics"/"moment map").

Then \mathcal{E}_{Δ} consists of the distributions of the form

$$P(x_1,\ldots,x_n)=\frac{1}{Z_{\theta}}\exp\left(\theta^t A_{\Delta;x_1,\ldots,x_n}\right),$$

where

- θ^t is a vector of parameters;
- $A_{\Delta;x_1,\ldots,x_n}$ is the column of A_G corresponding to x_1,\ldots,x_n .

The marginal polytope

Definition

The convex hull of the columns of A_{Δ} is the *marginal polytope* \mathbf{P}_{Δ} .

- The marginal polytope answers the question: Which combinations of C-marginals are compatible?
- Marginal polytopes are related to cut polytopes.
 (cut polytopes ~> max cut problem ~> NP completeness)
- The *moment map* $\mu : P \mapsto A_{\Delta}.P$ induces a bijection $\overline{\mathcal{E}_{\Delta}} \cong \mathbf{P}_{\Delta}$.
- If *t* are the marginals of the empirical distribution, then $\mu^{-1}(t)$ is the (generalized) MLE.

Example: Two independent binary variables

 $\Lambda = \bullet$ 00 10 11 $A_{\Delta} = \begin{pmatrix} 00 & 01 & 10 & 11 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ 10 00 11 01

The support of the GMLE

- If *t* are the marginals of the empirical distribution, then $\mu^{-1}(t)$ is the (generalized) MLE.
- The support of the GMLE corresponds to the face F of P_Δ in which t lies:
 - Denote by $a_{\Delta,x}$ the columns of A_{Δ} .
 - Then supp $(\mu^{-1}(t)) = \{x \in \mathcal{X} : a_{\Delta,x} \in \mathbf{F}\}.$

The support of the GMLE

- If *t* are the marginals of the empirical distribution, then $\mu^{-1}(t)$ is the (generalized) MLE.
- The support of the GMLE corresponds to the face \mathbf{F} of \mathbf{P}_{Δ} in which *t* lies:
 - Denote by $a_{\Delta,x}$ the columns of A_{Δ} .
 - Then supp $(\mu^{-1}(t)) = \{x \in \mathcal{X} : a_{\Delta,x} \in \mathbf{F}\}.$

Interpretation of the support

A support that is not full may indicate:

- 1. structural zeros? negligeable probabilities?
- 2. insufficient data?

If $supp(\mu^{-1}(t))$ is not full, it highlights peculiarities of the data that are important with respect to the model.

Prominent faces of marginal polytopes

Marginal faces

For any $S \in \Delta$ and $x_S \in X_{i \in S} X_i$, the inequality $t_{S;x_S} \ge 0$ is valid.

Lemma

 $t_{S;x_S} \ge 0$ defines a facet if and only if S is a clique in Δ .

Cycle faces

Every cycle in Δ contributes inequalities, the *cycle inequalities*. In the easiest case of a binary cycle x_1, x_2, x_3 :

 $t_{\{1,3\};(0,0)} \le t_{\{1,2\};(0,0)} + t_{\{2,3\};(1,0)}$

(Proof: If $t_{\{1,3\};(0,0)}(a_x) = 1$, then either $t_{\{1,2\};(0,0)}(a_x) = 1$ or $t_{\{1,3\};(1,0)}(a_x) = 1$.)

The role of marginal and cycle facets

- If Δ is a cycle, all facets are either marginal or cycle facets.
- If all variables are binary:
 - □ If $|S| \le 2$ for all $S \in \Delta^1$, then all facets are either marginal or cycle facets if and only if Δ has no *K*4-minor.
 - For graphs with $|V| \le 5$, all facets of \mathbf{P}_G arise from marginal and cycle inequalities, using:

"pyramid construction:" and "thickening:"

The same is true for the majority of all graphs on six nodes.

¹I.e. \mathbf{P}_{Δ} is a cut polytope.

J. Rauh (MPI MIS) : Marginal faces of marginal polytopes

Reducible simplicial complexes

Definition

 Δ is *reducible* if there exist $V_1, V_2 \subset V$ that satisfy:

1.
$$V \setminus V_1 \neq \emptyset$$
, $V \setminus V_2 \neq \emptyset$ and $V = V_1 \cup V_2$.

$$\Delta = \Delta|_{V_1} \cup \Delta|_{V_2}.$$

3. $(V_1 \cap V_2) \in \Delta$; i.e., the separator is *complete*.

If $\Delta = \Delta|_{V_1} \cup \Delta|_{V_2}$ is reducible, almost any statistical or mathematical question (about \mathcal{E}_{Δ} or \mathbf{P}_{Δ}) can be answered by looking at $\Delta|_{V_1}$ and $\Delta|_{V_2}$ separately.

Concerning \mathbf{P}_{Δ} :

Lemma (Erikson, Fienberg, Rinaldo, Sullivant 2006) If $\Delta = \Delta|_{V_1} \cup \Delta|_{V_2}$ is reducible, then any facet-defining inequality of \mathbf{P}_{Δ} is a facet defining inequality of either $\mathbf{P}_{\Delta|_{V_1}}$ or $\mathbf{P}_{\Delta|_{V_2}}$.

The simplicial complex of a facet

- Sub-complexes $\Delta' \subseteq \Delta$ provide valid inequalities of \mathbf{P}_{Δ} .
- Conversely, any facet **F** belongs to a sub-complex $\Delta(\mathbf{F})$.

Lemma

The complex $\Delta(\mathbf{F})$ of a facet \mathbf{F} is irreducible.

(If $\Delta = \Delta|_{V_1} \cup \Delta|_{V_2}$ is reducible, then $\Delta(\mathbf{F}) \subseteq \Delta|_{V_1}$ or $\Delta(\mathbf{F}) \subseteq \Delta|_{V_2}$.)

Questions:

- Which sub-complexes Δ' arise in this way?
- Which facets of P_{∆'} contribute facet defining inequalities of P_∆?

Problem

Given a point *t* inside a polytope **P**, determine the face \mathbf{F}_t of *t* in **P**!

Approaches:

Problem

Given a point *t* inside a polytope **P**, determine the face \mathbf{F}_t of *t* in **P**!

Approaches:

1. Compute the face lattice of P.

Problem

Given a point *t* inside a polytope **P**, determine the face \mathbf{F}_t of *t* in **P**!

Approaches:

- 1. Compute the face lattice of **P**.
- 2. Use linear programming.

Problem

Given a point *t* inside a polytope **P**, determine the face \mathbf{F}_t of *t* in **P**!

Approaches:

- 1. Compute the face lattice of **P**.
- 2. Use linear programming.

Due to the relation to cut polytopes, no general easy algorithm can be expected for marginal polytopes.

3. Wang, Rauh and Massam (2019) propose *inner* and *outer approximations* of the form

$$\operatorname{conv} \{a_x : x \in F_1\} \subseteq \mathbf{F}_t \subseteq \operatorname{conv} \{a_x : x \in F_2\}.$$

Approximating faces of marginal polytopes

Observation

If $\Delta_1 \subseteq \Delta_2$, any inequality for \mathbf{P}_{Δ_1} also holds for \mathbf{P}_{Δ_2} .

1. *Outer approximation* $\mathbf{F}_2 \supseteq \mathbf{F}_t$: look at sub-complex of Δ .

Examples: Induced sub-complexes on few vertices, small neighbourhoods, etc.

2. Inner approximation $\mathbf{F}_t \subseteq \mathbf{F}_1$: look at super-complexes of Δ .

Examples: Adding edges in order to complete separators leads to simpler marginal polytopes.

[see Wang, Rauh, Massam (Ann. Stat. 2019)]

The inner approximation in detail

- 1. Find a small, almost-complete separator $S \subset V$.
- 2. Complete the separator: Let $\tilde{\Delta} = \Delta \cup \{(i, j) : i, j \in S\}$.
- 3. Lift t to \tilde{t} , by choosing a compatible S-marginal.
- 4. Compute the face $\mathbf{F}_{\tilde{t}}$ of $\mathbf{P}_{\tilde{\Delta}}$.
- 5. The approximation is:

$$\mathbf{F}_1 = \operatorname{conv} \{ a_x : \tilde{a}_x \in \mathbf{F}_{\tilde{t}} \}.$$

Example I: The 4×4 -grid

- For each sample size, 1000 samples were generated from the model (parameters ~ N(0, I)).
- Outer approximation: A covering using four 3 × 3-grids
- Inner approx.: Use horizontal, vertical and diagonal separators.

sample size	MLE does not exist	$\mathbf{F}_1 = \mathbf{F}_t$	$\mathbf{F}_2 = \mathbf{F}_t$
10	100.0%	97.7%	100.0%
50	89.5%	100.0%	100.0%
100	71.0%	100.0%	100.0%
150	52.0%	100.0%	100.0%

Example II: The 5×10 -grid

- For each sample size, 100 samples were generated uniformly.
- Outer approximation: A covering using four 5 × 3-grids
- Inner approx.: Use parallel families of vertical separators

sample size	$\mathbf{F}_2 \neq \mathbf{P}$	$\mathbf{F}_1 = \mathbf{F}_2$
50	100.0%	94.3%
100	100.0%	82.5%
150	99.9%	76.5%
200	99.6%	81.2%
300	96.4%	87.7%
400	92.9%	91.5%
500	84.8%	93.9%
1000	44.7%	99.9%

Example III: US Senate voting data (2015)

Size of sub-complexes and facets

Question:

Do large sub-complexes give smaller facets?

• Exception: Pyramids (e.g. marginal faces)

• Positive example: Cycle facets.

Fraction of vertices a_x contained in:

• an *N*-cycle-facet:
$$O(c_1^{-N})$$

• an *N*-marginal facet:
$$1 - O(c_2^{-N})$$

Generalization: Approximating faces of polytopes

Linear pre-images of faces are faces:

- 1. To find an outer approximation: Look at linear projections of P.
- 2. To find an *inner approximation*: Look at linear liftings of **P**.

For details, see Wang, Rauh, Massam (Ann. Stat. 2019)

Summary

- Marginal polytopes contain combinatorial information about discrete undirected graphical / hierarchical models.
- Faces of marginal polytopes correspond to subgraphs.
- Smaller subgraphs tend to be more important.
- This allows to efficiently approximate faces.

References:

N. Wang, J. Rauh, H. Massam Approximating faces of marginal polytopes in discrete hierarchical models. Annals of Statistics 47 (3), 2019.