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Why Sensitivity Analysis?

I The accuracy of probability distributions inferred using
machine-learning algorithms heavily depends on data
availability and quality.

I In practical applications it is therefore fundamental to
investigate the robustness of a statistical model to
misspecification of some of its underlying probabilities.

I In the context of graphical models, investigations of
robustness fall under the notion of sensitivity analyses.

I These analyses consist in varying some of the model’s
probabilities or parameters and then assessing how far apart
the original and the varied distributions are.



Gaussian Independence Models

I Let Y be a n-dimensional Gaussian random vector with mean
µ ∈ Rn, covariance matrix Σ ∈ Rn×n

spsd and fµ,Σ its density.

I For A,B ⊆ [n] = {1, . . . , n}, let µA = (µi )i∈A and ΣA,B be
the submatrix of Σ with rows indexed by A and columns
indexed by B.

I For any two disjoint sets A,B ⊂ [n], YA = (Yi )i∈A has density
fµA,ΣA,A

and YA|YB = yB has density fµA|B ,ΣA|B where

µA|B = µA + ΣA,BΣ−1
B,B(yB − µB)

ΣA|B = ΣA,A − ΣA,BΣ−1
B,BΣB,A.



Gaussian Independence Models

The random vector YA is said to be conditionally independent of
YB given YC for disjoint subsets A,B,C ⊆ [n] if and only if the
density factorizes as

fµA∪B|C ,ΣA∪B|C = fµA|C ,ΣA|C fµB|C ,ΣB|C .

and write A ⊥⊥ B | C .

Drton et al. 2008

For a n-dimensional Gaussian random vector Y with density fµ,Σ
and disjoint A,B,C ⊂ [n], the conditional independence statement
A ⊥⊥ B | C is true if and only if all (#C + 1)× (#C + 1) minors of
the matrix ΣA∪C ,B∪C are equal to zero. Here, #C denotes the
cardinality of the set C .



Gaussian Independence Models

I Let CI = {A1 ⊥⊥ B1 | C1, . . . ,Ar ⊥⊥ Br | Cr} for disjoint index
sets Ai ,Bi ,Ci ⊂ [n] and i ∈ [r ], with r ∈ N.

I A Gaussian conditional independence model MCI for which all
CI statements are true is a special subset of all possible
Gaussian densities fµ,Σ:

MCI ⊆ {fµ,Σ | µ ∈ Rn,Σ ∈ Rn×n
spsd}.

I The parameter space of MCI is equal to the algebraic set

ACI = {µ ∈ Rn,Σ ∈ Rn×n
spsd | g(Σ) = 0 for all polynomials g

which are (#Ci+1)×(#Ci+1) minors of ΣAi∪Ci ,Bi∪Ci
, i ∈ [r ]}.



Undirected Graphical Models

A Gaussian undirected graphical model for a random vector
Y = (Yi )i∈[n] is defined by an undirected graph G = (V ,E ) with
vertex set V = [n] and a family of densities fµ,Σ whose covariance
matrix Σ is such that (Σ−1)ij = 0 if and only if (i , j) 6∈ E .

The statement Y2 ⊥⊥ {Y1,Y3} | Y4 can be represented by the
undirected graph

1

2

3

4

The 2× 2 minors of the submatrix

Σ{2,4},{1,3,4} =

(
σ21 σ23 σ24

σ41 σ43 σ44

)
need to vanish. Explicitly,
σ21σ43 − σ41σ23 = 0, σ21σ44 − σ41σ24 = 0
and σ23σ44 − σ43σ24 = 0.



Gaussian Bayesian Networks

A Gaussian Bayesian network for a random vector Y = (Yi )i∈[n] is
a DAG G = (V ,E ) with V = [n] and conditional Gaussian
densities fµi ,σi with mean µi = β0i +

∑
j∈pa(i) βjiyj and variance

σi ∈ R+, with pa(i) ⊆ [i − 1].

I Conditional independences Yi ⊥⊥ Y[i−1]\pa(i) | Ypa(i)
I Define

I β0 = (β0i )i∈[n] the vector of intercepts
I B be the strictly upper triangular matrix with entries Bji = βji

if j ∈ pa(i) and zero otherwise
I Φ = diag(σ1, . . . , σn) be the diagonal matrix of the conditional

variances
I Then Y has Gaussian density fµ,Σ with mean
µ = (I − B)−>β0 and covariance matrix
Σ = (I − B)−>Φ(I − B)−1



Gaussian Bayesian Networks

Consider Y3 ⊥⊥ Y1 | Y2

1 2 3

the 2× 2 minors of the submatrix

Σ{2,3},{1,2} =

(
σ21 σ22

σ31 σ32

)
need to vanish. Here the only vanishing minor simply corresponds
to the determinant. So g = σ21σ32 − σ31σ22 is a polynomial which
must be zero.



Sensitivity Analysis for Gaussian Models

I For a generic Gaussian random vector Y with density fµ,Σ,
robustness is usually studied by perturbing the mean vector µ
and the covariance matrix Σ.

I Such a perturbation is carried out by defining a perturbation
vector d ∈ Rn and a matrix D ∈ Rn×n which act additively on
the original mean and variance, giving rise to a vector Ỹ with
a new distribution fµ+d ,Σ+D .

I The dissimilarity between these two vectors is then usually
quantified via the KL divergence.

KL(Ỹ ||Y ) =
1

2

(
tr(Σ−1D) + d>Σ−1d + ln

(
det(Σ)

det(Σ + D)

))
.



What’s the issue?

1 2 3

I Suppose D has all zeros except for a d ∈ R in positions (2, 1)
and (1, 2) such that Σ + D ∈ R3×3

spsd.

I The graph is still valid if and only if the 2× 2 minor
(σ21 + d)σ32 − σ31σ22 is equal to zero.

I But this is the case if and only if d = 0: so if there is no
perturbation.

I If alternatively the only non-zero entry of D were in position
(1, 1) then no matter what the value of d ∈ R the graph
would be valid.



Possible Solutions

I Work with the conditional Gaussian distributions.

I Perturb the matrix Φ of conditional variances which then
affects Σ.

I Perturb the matrix B of regression coefficients which then
affects µ and Σ.

I However and critically, both these approaches lose the
intuitiveness of acting directly on the unconditional mean and
covariance of the Gaussian distribution.



Our Proposal

I Consider a Gaussian model MCI for a random vector
Y = (Yi )i∈[n] together with conditional independence
assumptions CI = {Ak ⊥⊥ Bk | Ck for k ∈ [r ]} as being
represented by a collection of vanishing minors of its
covariance matrix Σ ∈ Rn×n

spsd.

I Without loss suppose µ = 0n and write fΣ.

I Let
Φ∆ : Σ 7→ ∆ ◦ Σ

denote the map which sends a covariance matrix to its Schur
product with a matrix ∆.

I We call the map Φ∆ model-preserving if under this operation
the algebraic parameter set is mapped onto itself,
Φ∆(ACI) ⊆ ACI.



Variation and Covariation Matrices

We decompose the perturbation of a covariance matrix Σ into two
steps, and hence two Schur products.

1. Σ is mapped to its Schur product with a symmetric variation
matrix ∆ ∈ Rn×n

6=0 . Some σij are assigned a new value
σij 7→ δijσij at selected positions (i , j) while all others are
equal to one.

In demanding that all entries δij are non-zero, we automatically
avoid setting a non-zero covariance σij 6= 0 to zero via
multiplication by an entry of ∆. This type of perturbation would
force the corresponding variables to be independent, Xi ⊥⊥ Xj , in
the perturbed model, which would clearly violate the assumptions
in the original model MCI.



Variation and Covariation Matrices

We decompose the perturbation of a covariance matrix Σ into two
steps, and hence two Schur products.

2. A Schur product between ∆ ◦ Σ and a symmetric covariation
matrix ∆̃ ∈ Rn×n

6=0 . This matrix ∆̃ has ones in the positions
(i , j) whilst the others are to be set to ensure
model-preservation.

∆̃◦∆◦Σ=



? · · · · · · ?
...

. . . 1
...

... 1
. . .

...
? · · · · · · ?


◦



1 · · · · · · 1
...

. . . δij
...

... δji
. . .

...
1 · · · · · · 1


◦



σ11 · · · · · · σ1n
...

. . . σij
...

... σji
. . .

...
σn1 · · · · · · σnn


We need to find ∆̃ such that ∆̃ ◦∆ ◦ Σ ∈ ACI. Then the map
Φ∆̃◦∆ is model-preserving.



Example

Consider Y3 ⊥⊥ Y2 | Y1 and perturb σ21 . Then

∆ =

1 δ 1
δ 1 1
1 1 1


and the only vanishing minor of ∆ ◦ Σ takes the form
δσ12σ32 − σ31σ22. This polynomial is equal to zero in either of
three cases

I σ22 is covaried by δ;

I σ31 and σ13 are covaried by δ

I σ22, σ31, σ13, σ32 and σ23 are covaried by δ.



The associated covariation matrices ∆̃ are,1 1 1
1 δ 1
1 1 1

 ,

1 1 δ
1 1 1
δ 1 1

 ,

1 1 δ
1 δ δ
δ δ 1

 .

For these ∆̃, we have that Φ∆̃◦∆ is model-preserving.

Consider ∆̃{2,3},{1,2} ◦∆{2,3},{1,2}. Then the matrices are equal to(
δ δ
1 1

)
,

(
δ 1
δ 1

)
,

(
δ δ
δ δ

)
.



Some Notation

For any symmetric matrix D ∈ Rn×n and two index sets
A,B ⊆ [n], we henceforth denote with bDA,Bc1 the symmetric, full
dimension n × n matrix where:

I all positions indexed by A and B are equal to the
corresponding entries in D;

I entries not indexed by A and B are set to ensure symmetry;
I all other entries are equal to one.

Let D ∈ R3×3 and suppose

D{1,2},{2,3} =

(
1 δ
1 δ

)
.

Then ⌊
D{1,2},{2,3}

⌋1
=

1 1 δ
1 1 δ
δ δ 1

 .



Covariation Matrices

For a single-parameter variation matrix ∆ with δij = δji = δ, we
say that the covariation matrix ∆̃ is

I total if ∆̃ ◦∆ = δ1[n],[n];

I partial if ∆̃ ◦∆ = bδ1A∪C ,B∪Cc1.

I row-based if ∆̃ ◦∆ = bδ1E ,B∪Cc1 for a subset E ⊆ A ∪ C ;

I column-based if ∆̃ ◦∆ = bδ1A∪C ,F c1 for a subset F ⊆ B ∪ C .

By construction total, partial, row- and column-based covariations
ensure symmetry. Henceforth, we assume that the perturbed
matrix ∆̃ ◦∆ ◦ Σ is also positive semidefinite, so that
∆̃ ◦∆ ◦ Σ ∈ Rn×n

spsd.



One Independence Statement CI = {A ⊥⊥ B | C}

I If (i , j), (j , i) 6∈ (A ∪ C ,B ∪ C ) then the map Φ∆̃◦∆ is

model-preserving for a covariation ∆̃ = 1[n],[n].

I If C = ∅ then the map Φ∆̃◦∆ is model-preserving for

∆̃ = 1[n],[n].

I The map Φ∆̃◦∆ is model-preserving for total and partial

covariation matrices ∆̃.

For total covariation matrices, δ > 0. For partial covariations this
may not have to be enforced, but it is rare to investigate the effect
of changing the sign. Furthermore, increasing interest on
covariance matrices whose entries are positive.



One Independence Statement CI = {A ⊥⊥ B | C}

The map Φ∆̃◦∆ is model-preserving in the following cases:

I if (i , j) or (j , i) ∈ (A,B) for a row-based covariation ∆̃
whenever i ∈ E ⊆ A, and for a column-based covariation ∆̃
whenever j ∈ F ⊆ B;

I if (i , j) or (j , i) ∈ (A,C ) for a row-based covariation ∆̃
whenever i ∈ E ⊆ A, and for a column-based covariation ∆̃
whenever F = C ;

I if (i , j) or (j , i) ∈ (C ,B) for a row-based covariation ∆̃
whenever E = C , and for a column-based covariation ∆̃
whenever i ∈ F ⊆ B;

I if (i , j) and (j , i) ∈ (C ,C ) for a row-based covariation ∆̃
whenever E = C , and for a column-based covariation ∆̃
whenever F = C .



Multiple CI Statements

Consider Y4 ⊥⊥ Y{1,2} | Y3 and Y{2,4} ⊥⊥ Y5|Y3. The associated
submatrices are(

σ31 σ32 σ33

σ41 σ42 σ43

)
and

σ23 σ25

σ33 σ35

σ43 σ45

 .

Suppose the entry σ43 is perturbed by δ and pick two ∆̃. Then



1 1 1 1 1
1 1 1 1 1
1 1 δ 1 1
1 1 1 1 1
1 1 1 1 1


◦



1 1 1 1 1
1 1 δ 1 1
1 δ δ 1 1
1 1 1 1 1
1 1 1 1 1


◦



1 1 1 1 1
1 1 1 1 1
1 1 1 δ 1
1 1 δ 1 1
1 1 1 1 1


=



1 1 1 1 1
1 1 δ 1 1
1 δ δ2 δ 1
1 1 δ 1 1
1 1 1 1 1





Multiple CI Statements

Let CI = {A1 ⊥⊥ B1 | C1, . . . ,Ar ⊥⊥ Br | Cr}, A = ∪k∈[r ]Ak ,
B = ∪k∈[r ]Bk and C = ∪k∈[r ]Ck .

I Standard conditional independences can be eliminated from
CI;

I We introduced a notion of separable CIs for which we can
define covariations independently

I total and partial covariations are model-preserving.

The map Φ∆̃◦∆ is model-preserving for a row-based or a

column-based covariation matrix ∆̃ if

∆̃A∪C ,B∪C ◦∆A∪C ,B∪C = (b∆̃A∪C ,B∪C ◦∆A∪C ,B∪Cc1)A∪C ,B∪C .



Multiple CI Statements

Let CI = {A1 ⊥⊥ B1 | C1, . . . ,Ar ⊥⊥ Br | Cr}, A = ∪k∈[r ]Ak ,
B = ∪k∈[r ]Bk and C = ∪k∈[r ]Ck .

I Standard conditional independences can be eliminated from
CI;

I We introduced a notion of separable CIs for which we can
define covariations independently

I total and partial covariations are model-preserving.

The map Φ∆̃◦∆ is model-preserving for a row-based or a

column-based covariation matrix ∆̃ if

∆̃A∪C ,B∪C ◦∆A∪C ,B∪C = (b∆̃A∪C ,B∪C ◦∆A∪C ,B∪Cc1)A∪C ,B∪C .



Multi-way Sensitivity Analysis

Compositions of model-preserving maps are model-preserving. In
particular, for any two matrices ∆ and ∆′ we have
Φ∆(Φ∆′) = Φ∆◦∆′ .

I We can write ∆ = ∆1 ◦∆2 ◦ · · · ◦∆n where every ∆k

enforces a single-parameter variation.

I We can covary every single-parameter variation ∆k by a
matrix ∆̃k using any covariation.

I Because the Schur product is commutative, this induces a map

Φ∆̃1◦∆1◦∆̃2◦∆2◦···◦∆̃n◦∆n = Φ∆̃1◦∆̃2◦···◦∆̃n◦∆1◦∆2◦···◦∆n = Φ∆̃◦∆

where ∆̃ = ∆̃1 ◦ ∆̃2 ◦ · · · ◦ ∆̃n is the covariation matrix for ∆.



Divergence Quantification - KL Divergence

The KL divergence between Y and Ỹ in model-preserving
sensitivity analyses can be written as

KL(Ỹ ||Y ) =
1

2

[
tr(Σ−1(∆̃ ◦∆ ◦ Σ))− n + log

det(Σ)

det(∆̃ ◦∆ ◦ Σ)

]
.

For total covariation matrices KL divergence has the following
simple closed-form formula.

KL(Ỹ ||Y ) =
1

2

(
n(δ − log(δ)− 1)

)
where δ =

∏
i∈[n] δi for a multi-way variation.



Divergence Quantification - Frobenius Norm

I The Frobenius norm between zero-mean Gaussians Y and Y ′

is
F(Y ,Y ′) = tr((Σ− Σ′)>(Σ− Σ′)).

I Let ∆̃ ◦∆ = (δij)ij be model-preserving. Then

F(Y , Ỹ ) =
∑
i ,j∈[n]

(1− δij)2σ2
ij . (1)

I For standard sensitivity analyses F(Y ,Y ′) = tr(D>D).
I We can rank methods:

I F(Y , Ỹtotal) ≥ F(Y , Ỹpartial)
I F(Y , Ỹpartial) ≥ F(Y , Ỹrow)
I F(Y , Ỹpartial) ≥ F(Y , Ỹcolumn)
I F(Y , Ỹcolumn) ≥ F(Y , Ỹstandard)
I F(Y , Ỹrow) ≥ F(Y , Ỹstandard)



A First Example

1 2 3

4

Σ =


1 2 2 7
2 5 5 17
2 5 6 19
7 17 19 63

 .

One conditional independence statement,Y3 ⊥⊥ Y1 | Y2, vanishing
minor σ12σ23 − σ22σ13 = 0. Thus only variations of the
parameters σ21, σ22, σ31 and σ32 may break the conditional
independence structure of this model.



KL Divergence
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Figure: black = standard variation; blue = full; red = partial; green =
row-based; pink = column-based.



Frobenius Norm
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Figure: black = standard; blue = full; red = partial; green = row-based;
pink = column-based.



Two-way Sensitivity
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Figure: KL divergence (top) and Frobenius norm (bottom) for multi-way
variation of the parametes σ22 and σ32



Real-World Application

Metabolomic information of 77 individuals: 47 of them suffering of
cachexia, whilst the remaining do not. Cachexia is a metabolic
syndrome characterized by loss of muscle with or without loss of
fat mass.
We focus on only six metabolics: Adipate (A), Betaine (B),
Fumarate (F), Glucose (GC), Glutamine (GM) and Valine (V).

A

F

GC

B

GM

V

A

F

GC

B

GM

V



Real-World Application

B V GC GM A F


B 304 3262 220 2963 414 208
V 3262 98456 6637 89431 12489 6279

GC 220 6637 3950 53223 1693 839
GM 2963 89431 53223 3050126 65012 31858
A 414 12489 1695 65012 7279 1791
F 208 6279 839 31858 1791 1124

B V GC GM A F


B 41 1004 0 310 168 51
V 1004 38647 0 11923 10192 1974

GC 0 0 109 376 0 77
GM 310 11923 376 8952 3144 1092
A 168 10192 0 3144 5171 520
F 51 1974 77 1092 520 192



KL Divergence
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Figure: We use the color code black = standard variation; blue = full; red
= partial; green = row-based; pink = column-based.



Frobenius Norm
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Figure: black = standard variation; blue = full; red = partial; green =
row-based; pink = column-based.



Conclusions

I A new approach to sensitivity analysis which does not break
the conditional independence structure of the model;

I The effect of changing additional entries may (or may not)
increase the divergence between the original and the varied
distributions, depending on the form of the matrix

I For standard analyses, the theory of interval matrices can tell
us for which variations the matrix is still positive-semidefinite

I An R package implementing these methods (as well as
standard ones) is currently being developed.
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