

Conditional independence in max-linear Bayesian networks ¹

Steffen Lauritzen Department of Mathematical Sciences

Munich October 2019 Slide 1/23

¹Based on joint work with C. Améndola, C. Klüppelberg, and N. Tran — in progress. Structural equation models

Consider a *directed acyclic graph* (DAG) $\mathcal{D} = (V, E)$:

Each node $v \in V$ represents a *random variable* X_v .

Joint distribution of $X = (X_1, X_2, X_3, X_4)$ is determined by a system of *structural equations*

$$X_1 = \phi_1(Z_1)$$

$$X_2 = \phi_2(X_1, Z_2)$$

$$X_3 = \phi_3(X_1, Z_3)$$

$$X_4 = \phi_4(X_2, X_3, Z_4)$$

where Z_1, Z_2, Z_3, Z_4 are independent

Steffen Lauritzen — Conditional independence in max-linear Bayesian networks — Munich October 2019 Slide 2/23

Max-linear structural equations

We consider *recursive max-linear structural equation systems*, where $x \lor y = \max(x, y)$:

$$X_{\nu} = \bigvee_{u \in \mathsf{pa}(\nu)} c_{\nu u} X_{u} \lor c_{\nu \nu} Z_{\nu}, \quad \nu \in V, \tag{1}$$

where now $Z_v, v \in V$ are independent *innovations* with *atom free* distributions having support \mathbb{R}_+ and $c_{vu}, u \in pa(v), c_{vv}$ are *positive structural coefficients*. For simplicity we assume $c_{vv} = 1$ for all $v \in V$.

Tropical linear algebra

We work in the max-times semiring $(\bar{R}_+ = \mathbb{R}_+ \cup 0, \lor, \odot)$ where \odot denotes ordinary multiplication.

A max-linear map from $(\bar{\mathbb{R}}^n_+,\vee,\odot)$ to $(\bar{\mathbb{R}}^m_+,\vee,\odot)$ has the matrix representation $A\in \bar{R}^{m\times n}_+$ and

$$(A \odot x)_i = \bigvee_{j=1}^n a_{ij} x_j.$$

If we collect the innovations into the column vector $Z = (Z_1, \ldots, Z_d)^{\top}$ the equation system becomes

$$X = (C \odot X) \lor Z.$$

Solving the structural equation

The system can also be represented as

 $X = C^* \odot Z$

where the *idempotent Kleene star* matrix of C

$$C^* = I \vee C \vee C^{\odot 2} \vee \cdots \vee C^{\odot (d-1)},$$
(2)

Elements C_{ij}^* in the Kleene star matrix is the *maximal* weight (product of coefficients) of a dipath from *j* to *i*. A dipath that attains this weight is a *critical dipath*

The equation $X = C^* \odot Z$ implies that the joint distribution of Z is completely determined by the critical dipaths.

Thus edges which do not form part of a critical path are redundant and can be removed.

Cassiopeia (an example)

Surprisingly, it holds for any MLBN that $1 \perp 3 \mid \{4, 5\}$ whereas $\neg(1 \perp_{\mathcal{D}} 3 \mid \{4, 5\})!$

To see this, let all coefficients equal to 1. Then the conditional distribution of (X_1, X_2, X_3) given $(X_4, X_5) = (x_4, x_5)$ is determined by imposing the following inequalities on (X_1, X_2, X_3) :

$$\max(X_1,X_2) \leq x_4, \quad \max(X_2,X_3) \leq x_5.$$

Example continued

 $\max(X_1,X_2) \leq x_4, \quad \max(X_2,X_3) \leq x_5.$

Now distinguish three cases:

1 If $x_4 < x_5$, the condition is equivalent to

$$\max(X_1,X_2) \leq x_4, \quad X_3 \leq x_5.$$

2 If $x_4 > x_5$, the condition is equivalent to

$$\max(X_1) \leq x_4, \quad \max(X_2,X_3) \leq x_5.$$

3 If $x_4 = x_5$ we must have $X_2 = x_4 = x_5$ and hence equiv

$$X_1 \leq x_4, \quad X_3 \leq x_5, \quad X_2 = x_4 = x_5.$$

Steffen Lauritzen — Conditional independence in max-linear Bayesian networks — Munich October 2019 Slide 7/23

Example continued

In all three (contexts) we have independence of X_1 and X_3 because they do not occur together in the same inequality

- If $x_4 < x_5$, x_5 cannot be caused by X_2 but only by X_3 or Z_5 .
- **2** If $x_4 > x_5$, x_4 cannot be caused by X_2 but only by X_1 or Z_4 .
- **3** If $x_4 = x_5$ both must be caused by X_2 .

So the key is to identify causes.

Representing conditional distributions

Key is representation of conditional distribution of $X_L \mid X_K = x_K$ as

$$X_L = C_{LK}^* \odot x_K \lor C_{LL}^* \odot Z_L$$

with conditional distribution of Z_L given $X_K = x_K$ determined by restriction

$$x_K \geq C_{KL}^* \odot Z_L$$

and *removing redundant terms* (as in the "Cassiopeia" example) to obtain a *compact representation* First we need to go closer into the structure of max-linear Bayesian networks.

The impact graph

Definition

Let $\mathcal{D} = (V, E)$ be a DAG and C be a coefficient matrix supported by \mathcal{D} . The *impact graph* is a random graph G = G(Z) on V consisting of the following edges:

$$j \rightarrow i \iff X_i = c_{ij}^* Z_j$$

and we let
$$\mathcal{E}(g) = \{z : G(z) = g\}.$$

Note that with probability one *it holds that* G(Z) *is a forest*: each node has at most one parent because the distributions of Z are atom free.

We say that $j \rightarrow i$ in g means that X_i i realized by Z_j . Recall

$$X_i = \bigvee_j c_{ij}^* Z_j.$$

Impact exchange matrix

Before we give a full characterization of the possible impact graphs, we need

Definition

Consider a DAG \mathcal{D} with coefficient matrix C and Kleene star C^* and let g be a forest with root set R = R(g). The *impact* exchange matrix $M = M(g) = M(g, C^*)$ of g with respect to C^* is an $R \times R$ matrix with entries defined by $m_{rr} = 0$ for all $r \in R$, and for $r \neq r'$:

$$m_{rr'} := \max_{i \in ch_g(r)} \frac{C_{ir'}^*}{C_{ir}^*}.$$
 (3)

Here $ch_g(r)$ denotes the children of r in g.

Structure of impact graphs

Theorem

Consider a max-linear BN with Kleene star C^* . It then holds that $P(\mathcal{E}(g)) > 0$ if and only if the following four conditions hold:

a) g is a subgraph of
$$\mathcal{D}^* = \mathcal{D}(\mathcal{C}^*)$$

c If
$$j \rightarrow i$$
 in g and $c_{ij}^* = c_{ik}^* c_{kj}^*$ then $k \not\rightarrow i$ and $j \rightarrow k$ in g.
d $\lambda(M(g)) < 1$.

Here a *star* is a tree of height at most one, and and $\lambda(M(g))$ denotes the *max-times tropical eigenvalue* of M(g).

This theorem gives a *complete control of how extreme events* (corresponding to roots in g) spread deterministically to other parts of the network.

Impact graphs for Cassiopeia

For the Cassiopeia example the possible impact graphs are: the empty graph, all subgraphs with a single edge, and the following four subgraphs with two edges:

The triangle condition (c) and eigenvalue condition (d) are not relevant for this example.

Illustration of the triangle condition

If the innovation at j is responsible for the value at i it must also be responsible for the value at k, indicated in blue.

Illustration of the eigenvalue condition

The graph to the right cannot be an impact graph for the max-linear BN to the left because

$$M(g) = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

and then $\lambda(M(g)) = 2 > 1$.

For if $1 \rightarrow 3$ we must have $\frac{1}{2}X_1 > X_2$ and since $2 \rightarrow 4$ we must also have $\frac{1}{2}X_2 > X_1$ implying $X_2 > 4X_2$ which is not possible.

Piecewise linearity

A max-linear map is *piecewise linear* and the the impact graph index the linear pieces.

Indeed the pieces are the maps $L_g: \mathbb{R}^{R(g)}_+ o R^V_+$ given as

$$L_g(z)_r = z_r, r \in R(g);$$
 $L_g(z)_i = c_{ir}^* z_r$ iff $r \to i$ in g

and $L_g(z)_i = 0$ otherwise. So we actually have

$$X = C^* \odot Z \stackrel{\text{a.s.}}{=} L_{G(Z)}(Z).$$

This insight is important for the next concept.

Impact graph compatible with $\{X_K = x_K\}$

We say an impact graph g is *compatible* with $\{X_{\mathcal{K}} = x_{\mathcal{K}}\}$ if

- x_K is in the image of the map $\Pi_K \circ L_g$;
- $\Pi_K \circ L_g$ has minimal rank among those who satisfy the image condition

In the Cassiopeia DAG the impact graph to the left is compatible with an event of the form $X_{\{4,5\}} = (x_4, x_5)$ if $x_4 > x_5$. Because then

$$x_4 = x_1 \lor x_2 = x_1 > x_2 = x_2 \lor x_3 = x_5$$

whereas it is only compatible with the graph to the right if $x_4 = x_5$ since the latter has rank 1 and the former rank 2. Steffen Lauritzen – Conditional independence in max-linear Bayesian networks – Munich October 2019 Steffen Zardia (2019)

The source graph

Whereas the impact graph describes the way extreme events spread in the network, the *source graph* $C(X_K = x_K)$ tracks the possible sources for a given event $X_K = x_K$.

We abstain from giving the details of how to construct the source graph, but it involves forming the *total impact graph* $\mathcal{I}(X_{\mathcal{K}} = x_{\mathcal{K}})$ compatible with $\{X_k = x_{\mathcal{K}}\}$:

$$\mathcal{I}(X_{\mathcal{K}}=x_{\mathcal{K}})=igcup_{g\in\mathfrak{G}(X_{\mathcal{K}}=x_{\mathcal{K}})}g$$

where $\mathfrak{G}(X_{\mathcal{K}} = x_{\mathcal{K}})$ denotes the set of impact graphs that are compatible with $\{X_{\mathcal{K}} = x_{\mathcal{K}}\}$.

Subsequently we identify *redundant nodes, redundant edges*, and remove them from the total impact graph.

Eventually, the source graph yields a *reduced representation* of the conditional distribution given $X_K = x_K$.

Steffen Lauritzen — Conditional independence in max-linear Bayesian networks — Munich October 2019 Slide 18/23

More auxiliary DAGs

Definition

The conditional reachability DAG \mathcal{D}_{K}^{*} is the graph on V defined as: $j \rightarrow i \in \mathcal{D}_{K}^{*}$ if and only if there exists a directed path from j to i that circumvents K.

Definition

Let $\mathcal{D} = (V, E)$ be a DAG and C be a coefficient matrix supported by \mathcal{D} . The *critical DAG* $\mathcal{D}_{K}^{*}(C)$ is the graph on Vdefined as: $j \to i \in \mathcal{D}_{K}^{*}(C)$ iff $c_{ij}^{*} > 0$ and all critical directed paths π from j to i circumvent K.

*-separation

Definition

A path π between *j* and *i* in a DAG is *-*connecting* relative to *K* if and only if is one of the following, where shaded nodes are in *K*

A path that is not *-connecting relative to K is said to be *-blocked by K. We also say that I and J are *-separated by K if all paths between I and J are *-blocked and we then write $I \perp_* J \mid K$.

Context free conditional independence

Our main conditional are the following three theorems

Theorem (Independent of C)

Let $\mathcal{D} = (V, E)$ be a directed acyclic graph. If X follows a recursive max-linear model with support \mathcal{D} , then for all mutually disjoint $I, J, K \subseteq V$,

 $X_I \perp \!\!\perp X_J \mid X_K$ for all C adapted to $\mathcal{D} \iff I \perp_* J \mid K$ in \mathcal{D}_K^* .

Theorem (Context-free for given C)

Let $\mathcal{D} = (V, E)$ be a directed acyclic graph and C a fixed coefficient matrix with support \mathcal{D} . If X follows a recursive max-linear model with coefficient matrix C, then for all mutually disjoint $I, J, K \subseteq V$,

$$X_I \perp \!\!\perp X_J \mid X_K \iff I \perp_* J \mid K \text{ in } \mathcal{D}_K^*(C).$$

Context-dependent CI

Third major CI result:

Theorem (Context-dependent)

Let $\mathcal{D} = (V, E)$ be a directed acyclic graph and C a fixed coefficient matrix with support \mathcal{D} . Let X follow a recursive max-linear model with coefficient matrix C. Let $K \subseteq V$ and $\mathcal{C}(X_K = x_K)$ be the source graph of the event $\{X_K = x_K\}$. For all mutually disjoint subsets $I, J, K \subseteq V$

$$X_I \perp \!\!\perp X_J \mid X_K = x_K \iff I \perp_* J \mid K \text{ in } C(X_K = x_K).$$

Summary and conclusion

- The *impact graph* describes exactly how extreme events spread deterministically;
- The *impact graph compatible with* {*X*_K = *x*_K} does the same in the given context {*X*_K = *x*_K}
- The *source graph* identifies potential sources in the given context and provides a compact representation of the conditional distribution;
- As a consequence, basic CI theorems follow, based on resp. the *DAG alone*, the specific *coefficient matrix C*, or the latter in conjunction with the *context* {*X_K* = *x_K*}
 Watch this space: there is more to come...

