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Structural equation models
Consider a directed acyclic graph (DAG) D = (V ,E ):

1

2
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4

Each node v ∈ V represents a random variable Xv .

Joint distribution of X = (X1,X2,X3,X4) is determined by a
system of structural equations

X1 = φ1(Z1)

X2 = φ2(X1,Z2)

X3 = φ3(X1,Z3)

X4 = φ4(X2,X3,Z4)

where Z1,Z2,Z3,Z4 are independent
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Max-linear structural equations

We consider recursive max-linear structural equation systems,
where x ∨ y = max(x , y):

Xv =
∨

u∈pa(v)

cvuXu ∨ cvvZv , v ∈ V , (1)

where now Zv , v ∈ V are independent innovations with atom
free distributions having support R+ and cvu, u ∈ pa(v), cvv
are positive structural coefficients.
For simplicity we assume cvv = 1 for all v ∈ V .
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Tropical linear algebra

We work in the max-times semiring (R̄+ = R+ ∪ 0,∨,�)
where � denotes ordinary multiplication.

A max-linear map from (R̄n
+,∨,�) to (R̄m

+,∨,�) has the
matrix representation A ∈ R̄m×n

+ and

(A� x)i =
n∨

j=1

aijxj .

If we collect the innovations into the column vector
Z = (Z1, . . . ,Zd)> the equation system becomes

X = (C � X ) ∨ Z .
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Solving the structural equation

The system can also be represented as

X = C ∗ � Z

where the idempotent Kleene star matrix of C

C ∗ = I ∨ C ∨ C�2 ∨ · · · ∨ C�(d−1), (2)

Elements C ∗ij in the Kleene star matrix is the maximal weight
(product of coefficients) of a dipath from j to i . A dipath
that attains this weight is a critical dipath

The equation X = C ∗ � Z implies that the joint distribution
of Z is completely determined by the critical dipaths.

Thus edges which do not form part of a critical path are
redundant and can be removed.
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Cassiopeia (an example)

1 2 3

4 5

Surprisingly, it holds for any MLBN that 1⊥⊥3 | {4, 5}
whereas ¬(1⊥D 3 | {4, 5})!

To see this, let all coefficients equal to 1. Then the
conditional distribution of (X1,X2,X3) given
(X4,X5) = (x4, x5) is determined by imposing the following
inequalities on (X1,X2,X3):

max(X1,X2) ≤ x4, max(X2,X3) ≤ x5.
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Example continued
1 2 3

4 5

max(X1,X2) ≤ x4, max(X2,X3) ≤ x5.

Now distinguish three cases:

1 If x4 < x5, the condition is equivalent to

max(X1,X2) ≤ x4, X3 ≤ x5.

2 If x4 > x5, the condition is equivalent to

max(X1) ≤ x4, max(X2,X3) ≤ x5.

3 If x4 = x5 we must have X2 = x4 = x5 and hence equiv

X1 ≤ x4, X3 ≤ x5, X2 = x4 = x5.
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Example continued

1 2 3

4 5

In all three (contexts) we have independence of X1 and X3

because they do not occur together in the same inequality

1 If x4 < x5, x5 cannot be caused by X2 but only by X3 or
Z5.

2 If x4 > x5, x4 cannot be caused by X2 but only by X1 or
Z4.

3 If x4 = x5 both must be caused by X2.

So the key is to identify causes.
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Representing conditional distributions

Key is representation of conditional distribution of
XL |XK = xK as

XL = C ∗LK � xK ∨ C ∗LL � ZL

with conditional distribution of ZL given XK = xK
determined by restriction

xK ≥ C ∗KL � ZL

and removing redundant terms (as in the ”Cassiopeia”
example) to obtain a compact representation

First we need to go closer into the structure of max-linear
Bayesian networks.
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The impact graph

Definition

Let D = (V ,E ) be a DAG and C be a coefficient matrix
supported by D. The impact graph is a random graph
G = G (Z ) on V consisting of the following edges:

j → i ⇐⇒ Xi = c∗ijZj

and we let E(g) = {z : G (z) = g}.

Note that with probability one it holds that G (Z ) is a forest:
each node has at most one parent because the distributions
of Z are atom free.

We say that j → i in g means that Xi i realized by Zj . Recall

Xi =
∨
j

c∗ijZj .
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Impact exchange matrix

Before we give a full characterization of the possible impact
graphs, we need

Definition

Consider a DAG D with coefficient matrix C and Kleene star
C ∗ and let g be a forest with root set R = R(g). The impact
exchange matrix M = M(g) = M(g ,C ∗) of g with respect to
C ∗ is an R × R matrix with entries defined by mrr = 0 for all
r ∈ R, and for r 6= r ′:

mrr ′ := max
i∈chg (r)

c∗ir ′

c∗ir
. (3)

Here chg (r) denotes the children of r in g .
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Structure of impact graphs

Theorem

Consider a max-linear BN with Kleene star C ∗. It then holds
that P(E(g)) > 0 if and only if the following four conditions
hold:

(a) g is a subgraph of D∗ = D(C ∗)

(b) g is a galaxy, i.e. a forest of stars

(c) If j → i in g and c∗ij = c∗ikc
∗
kj then k 6→ i and j → k in g.

(d) λ(M(g)) < 1.

Here a star is a tree of height at most one, and and λ(M(g))
denotes the max-times tropical eigenvalue of M(g).

This theorem gives a complete control of how extreme events
(corresponding to roots in g) spread deterministically to
other parts of the network.
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Impact graphs for Cassiopeia

For the Cassiopeia example the possible impact graphs are:
the empty graph, all subgraphs with a single edge, and the
following four subgraphs with two edges:

1 2 3

4 5

1 2 3

4 5

1 2 3

4 5

1 2 3

4 5

The triangle condition (c) and eigenvalue condition (d) are
not relevant for this example.
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Illustration of the triangle condition

i

j

k

c∗ikc
∗
kj = c∗ij

If the innovation at j is responsible for the value at i it must
also be responsible for the value at k, indicated in blue.
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Illustration of the eigenvalue condition
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The graph to the right cannot be an impact graph for the
max-linear BN to the left because

M(g) =

[
0 2
2 0

]
and then λ(M(g)) = 2 > 1.

For if 1→ 3 we must have 1
2X1 > X2 and since 2→ 4 we

must also have 1
2X2 > X1 implying X2 > 4X2 which is not

possible.
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Piecewise linearity

A max-linear map is piecewise linear and the the impact
graph index the linear pieces.

Indeed the pieces are the maps Lg : RR(g)
+ → RV

+ given as

Lg (z)r = zr , r ∈ R(g); Lg (z)i = c∗irzr iff r → i in g

and Lg (z)i = 0 otherwise. So we actually have

X = C ∗ � Z
a.s.
= LG(Z)(Z ).

This insight is important for the next concept.
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Impact graph compatible with {XK = xK}
We say an impact graph g is compatible with {XK = xK} if

• xK is in the image of the map ΠK ◦ Lg ;

• ΠK ◦ Lg has minimal rank among those who satisfy the
image condition

1 2 3

4 5

1 2 3

4 5

In the Cassiopeia DAG the impact graph to the left is
compatible with an event of the form X{4,5} = (x4, x5) if
x4 > x5. Because then

x4 = x1 ∨ x2 = x1 > x2 = x2 ∨ x3 = x5

whereas it is only compatible with the graph to the right if
x4 = x5 since the latter has rank 1 and the former rank 2.
Steffen Lauritzen — Conditional independence in max-linear Bayesian networks — Munich October 2019

Slide 17/23



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

The source graph
Whereas the impact graph describes the way extreme events
spread in the network, the source graph C(XK = xK ) tracks
the possible sources for a given event XK = xK .

We abstain from giving the details of how to construct the
source graph, but it involves forming the total impact graph
I(XK = xK ) compatible with {Xk = xK}:

I(XK = xK ) =
⋃

g∈G(XK=xK )

g

where G(XK = xK ) denotes the set of impact graphs that are
compatible with {XK = xK}.
Subsequently we identify redundant nodes, redundant edges,
and remove them from the total impact graph.

Eventually, the source graph yields a reduced representation
of the conditional distribution given XK = xK .
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More auxiliary DAGs

Definition

The conditional reachability DAG D∗K is the graph on V
defined as: j → i ∈ D∗K if and only if there exists a directed
path from j to i that circumvents K .

Definition

Let D = (V ,E ) be a DAG and C be a coefficient matrix
supported by D. The critical DAG D∗K (C ) is the graph on V
defined as: j → i ∈ D∗K (C ) iff c∗ij > 0 and all critical directed
paths π from j to i circumvent K .
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∗-separation

Definition

A path π between j and i in a DAG is ∗-connecting relative
to K if and only if is one of the following, where shaded
nodes are in K

j

i

j ′

j i

j

k

i j ′

k

i

j

j ′

k

i ′

j i

A path that is not ∗-connecting relative to K is said to be
∗-blocked by K . We also say that I and J are ∗-separated by
K if all paths between I and J are ∗-blocked and we then
write I ⊥∗ J |K .
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Context free conditional independence
Our main conditional are the following three theorems

Theorem (Independent of C )

Let D = (V ,E ) be a directed acyclic graph. If X follows a
recursive max-linear model with support D, then for all
mutually disjoint I , J,K ⊆ V ,

XI⊥⊥XJ |XK for all C adapted to D ⇐⇒ I ⊥∗ J |K in D∗K .

Theorem (Context-free for given C )

Let D = (V ,E ) be a directed acyclic graph and C a fixed
coefficient matrix with support D. If X follows a recursive
max-linear model with coefficient matrix C , then for all
mutually disjoint I , J,K ⊆ V ,

XI⊥⊥XJ |XK ⇐⇒ I ⊥∗ J |K in D∗K (C ).
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Context-dependent CI

Third major CI result:

Theorem (Context-dependent)

Let D = (V ,E ) be a directed acyclic graph and C a fixed
coefficient matrix with support D. Let X follow a recursive
max-linear model with coefficient matrix C . Let K ⊆ V and
C(XK = xK ) be the source graph of the event {XK = xK}.
For all mutually disjoint subsets I , J,K ⊆ V

XI⊥⊥XJ |XK = xK ⇐⇒ I ⊥∗ J |K in C(XK = xK ).
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Summary and conclusion

• The impact graph describes exactly how extreme events
spread deterministically;

• The impact graph compatible with {XK = xK} does the
same in the given context {XK = xK}
• The source graph identifies potential sources in the

given context and provides a compact representation of
the conditional distribution;

• As a consequence, basic CI theorems follow, based on
resp. the DAG alone, the specific coefficient matrix C ,
or the latter in conjunction with the context {XK = xK}

Watch this space: there is more to come. . .
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