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In order to make Graphical Gaussian Models a viable modeling tool
when the number of variables outgrows the number of observations,
p >> n, Højsgaard and Lauritzen (2008) propose models which
impose equality restrictions on certain entries of precision matrix or
partial correlation matrix.

Such models can be represented by colored graphs: colored vertices
and edges code the equality of entries of the matrix.
Three types of restrictions on graphical Gaussian models are:

1 RCON models
2 RCOR models
3 RCOP models - restrictions on covariance matrix are generated by a

permutation subgroup

(RCOP) ( (RCON) ∩ (RCOR)
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RCOP colored spaces

We will consider only full graphs.

For a subgroup Γ ⊂ Sp, we define the space of symmetric matrices
invariant under Γ, or the colored space,

ZΓ :=
{
x ∈ Sym(p;R) ; xij = xσ(i)σ(j) for all σ ∈ Γ

}
,

and the cone of positive definite matrices in ZΓ,

PΓ := ZΓ ∩ Sym+(p;R).

Equivalently,

ZΓ = { x ∈ Sym(p;R) ; R(σ) · x = x · R(σ) for all σ ∈ Γ } ,

where R(σ) denotes the (permutation) matrix of σ.
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Example

Let p = 3 and Γ = 〈(123)〉. We have R((123)) =

0 1 0
0 0 1
1 0 0

 and

R((123)) · x = x · R((123)) implies

x =

a b b
b a b
b b a

 .

Thus,

Z〈(123)〉 =


a b b
b a b
b b a

 ; a, b ∈ R

 .

It is easily seen that we also have

ZS3 = Z〈(123)〉.
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Same colored space can be generated by different subgroups.

Let us define

Γ∗ =
{
σ∗ ∈ Sp ; xij = xσ∗(i)σ∗(j) for all x ∈ ZΓ

}
.

Clearly, Γ is a subgroup of Γ∗ and Γ∗ is the unique largest subgroup
of Sp such that ZΓ∗ = ZΓ.

Wielandt (1969) and Siemons (1982, 1983)

Lemma

If Z〈σ0〉 = Z〈σ〉 for some σ0,σ ∈ Sp, then 〈σ0〉 = 〈σ〉.
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Notation

We write B⊕r for Ir ⊗ B, that is,

B⊕r =

B
. . .

B


Let MK be a real matrix representations of space Herm(r ;K) for
K ∈ {R,C,H}.

MR = IdSym(r ;R).

For z = a + b i ∈ C define MC(z) =

(
a −b
b a

)
.

r × r complex matrix can be realized as a (2r)× (2r) real matrix by
setting the correspondence

Herm(r ;C) 3
(
zi ,j
)

1¬i ,j¬r
'
(
MC(zi ,j)

)
1¬i ,j¬r

∈ Sym(2r ;R).

Similarly we can define MH : Herm(r ;H)→ Sym(4r ;R).
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Theorem

The space ZΓ coincides withUΓ

MK1 (x1)⊕k1/d1

. . .
MKL

(xL)⊕kL/dL

U>Γ ;
xi ∈ Herm(ri ;Ki )

i = 1, 2, . . . , L

 ,

where

UΓ is an orthogonal matrix,

(ki , di , ri )
L
i=1 are the structure constants, which depend on Γ,

MK(x) is the real symmetric matrix representation of a Hermitian
matrix x with values in K,
Ki ∈ {R,C,H}.

Andersson (1975), Andersson and Madsen (1998)

If X ∈ ZΓ is as above, let φi (X ) := xi ∈ Herm(ri ;Ki ).
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Example

For p = 3 and Γ = 〈(123)〉, we have

ZΓ =


a b b
b a b
b b a

 ; a, b ∈ R

 .

Let UΓ =

1/
√

3
√

2/3 1
1/
√

3 −1/
√

6 1/
√

2
1/
√

3 −1/
√

6 −1/
√

2

.

Then,

U>Γ ZΓUΓ =


a + 2b 0 0

0 a− b 0
0 0 a− b

 ; a, b ∈ R


=

{(
x1

x⊕2
2

)
; x1, x2 ∈ R

}
.

We have

(r1, r2) = (d1, d2) = (1, 1), (k1, k2) = (1, 2).
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Example

For p = 4 and Γ = 〈(12)〉, we have

ZΓ =



a b c d
b a c d
c c e f
d d f g

 ; a, b, c , d , e, f , g ∈ R

 .

Let UΓ =


1/2 1/2 0 1/

√
2

1/2 1/2 0 −1/
√

2
1/2 −1/2 1/

√
2 0

1/2 −1/2 −1/
√

2 0

.

Then,

U>Γ ZΓUΓ =



A B C 0
B D E 0
C E F 0
0 0 0 G

 ; A,B,C ,D,E ,F ,G ∈ R


and (r1, r2) = (3, 1), (d1, d2) = (1, 1), (k1, k2) = (1, 1),

ZΓ ' Sym(3;R)⊕ R.
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Sketch of the main argument

R : Γ 7→ GL(p;R) satisfies

R(σ ◦ σ′) = R(σ) · R(σ′), σ,σ′ ∈ Sp.

In other words, R is a representation of group Γ.

Observe that for any σ ∈ Sp

R(σ)

1
...
1

 =

1
...
1

 .

The space W0 = R(1, 1, . . . , 1)> is a Γ invariant subspace for any
subgroup Γ, that is, ∀σ ∈ Γ,

∀w ∈W0 R(σ)w ∈W0.

Similarly for W⊥0 .
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Sketch of the main argument

Let orthogonal matrix UΓ be constructed from a basis of W0 (first
column) and a basis of W⊥0 . Then,

U>Γ R(σ)UΓ =

(
∗ 0
0 ∗

)
Recall that

ZΓ = { x ∈ Sym(p;R) ; R(σ) · x = x · R(σ) for all σ ∈ Γ } .

Then U>Γ ZΓUΓ coincides with{
y ∈ Sym(p;R) ; [U>Γ R(σ)UΓ] · y = y · [U>Γ R(σ)UΓ]

}
.

Block decomposition of U>Γ R(σ)UΓ implies block decomposition of
y ∈ U>Γ ZΓUΓ.

In general, there exist proper Γ-invariant subspaces of W⊥0 . Finding
them is a very hard task.

Structure constants arise from block decomposition of R.
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Gamma integrals, part 1

PΓ = ZΓ ∩ Sym+(p;R), Ωi := Herm+(ri ;Ki ), i = 1, . . . , L.

For Y ∈ PΓ define ϕΓ(Y ) =
∏L

i=1(detφi (Y ))− dim Ωi/ri .

Let

I1 :=

∫
PΓ

Det (X )λ e−Tr[Y ·X ]ϕΓ(X )dX .

Theorem

The integral I1 converges if and only if

λ > maxi=1,...,L

{
(ri−1)di

2ki

}
and

Y ∈ Sym+(p,R).

If Y ∈ PΓ, then

I1 =
e−AΓλ+BΓ

∏L
i=1 ΓΩi (kiλ)

Det (Y )λ

with AΓ and BΓ depending explicitly on structure constants only.
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Gamma integrals, part 2

Define

I2 :=

∫
PΓ

Det (X )λ e−Tr[Y ·X ] dX .

Theorem

The integral I2 converges if and only if

λ > maxi=1,...,L

{
− 1

ki

}
and

Y ∈ Sym+(p,R).

If Y ∈ PΓ, then

I2 = e−AΓλ−BΓ

L∏
i=1

ΓΩi

(
ki λ+

dim Ωi

ri

)
ϕΓ(Y )

Det (Y )λ
.
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How to find structure constants?

If X ∈ ZΓ, then

X = UΓ

MK1 (x1)⊕k1/d1

. . .
MKL

(xL)⊕kL/dL

U>Γ

for some xi ∈ Herm(ri ;Ki ), i = 1, 2, . . . , L.

Recall that φi (X ) := xi .

In order to compute Gamma integrals on PΓ we need to find
(ri , di , ki )

L
i=1 and polynomials detφi (X ).
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In view of decomposition of ZΓ, we have

Det (X ) =
L∏

i=1

(detφi (X ))ki , X ∈ ZΓ.

Assume that we have an irreducible factorization

Det (X ) =
L′∏
j=1

fj(X )aj , X ∈ ZΓ,

where
each aj is a positive integer,
each fj(X ) is an irreducible polynomial of X ∈ ZΓ,
fi 6= fj if i 6= j .

Basing on results in Jordan algebras, we can deduce that
L = L′,
for each j , there exists i such that fj(X )aj = (detφi (X ))ki .
ki = aj and ri is the degree of fj(X ) = detφi (X ),
dim Ωi = ri + di ri

(ri−1)
2 = rank[Hess(log fj)(I )]
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Example

Let Γ = 〈σ1,σ2〉 be a subgroup of S16 generated by two permutations

σ1 = (1, 2, 5, 6)(3, 4, 7, 8)(9, 10, 13, 14)(11, 12, 15, 16),

σ2 = (1, 3, 5, 7)(2, 8, 6, 4)(9, 11, 13, 15)(10, 16, 14, 12).

The space ZΓ consists of matrices of the form

α1 α2 α3 α4 α5 α2 α3 α4 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
α2 α1 α4 α3 α2 α5 α4 α3 γ6 γ1 γ8 γ3 γ2 γ5 γ4 γ7
α3 α4 α1 α2 α3 α4 α5 α2 γ7 γ4 γ1 γ6 γ3 γ8 γ5 γ2
α4 α3 α2 α1 α4 α3 α2 α5 γ8 γ7 γ2 γ1 γ4 γ3 γ6 γ5
α5 α2 α3 α4 α1 α2 α3 α4 γ5 γ6 γ7 γ8 γ1 γ2 γ3 γ4
α2 α5 α4 α3 α2 α1 α4 α3 γ2 γ5 γ4 γ7 γ6 γ1 γ8 γ3
α3 α4 α5 α2 α3 α4 α1 α2 γ3 γ8 γ5 γ2 γ7 γ4 γ1 γ6
α4 α3 α2 α5 α4 α3 α2 α1 γ4 γ3 γ6 γ5 γ8 γ7 γ2 γ1

γ1 γ6 γ7 γ8 γ5 γ2 γ3 γ4 β1 β2 β3 β4 β5 β2 β3 β4
γ2 γ1 γ4 γ7 γ6 γ5 γ8 γ3 β2 β1 β4 β3 β2 β5 β4 β3
γ3 γ8 γ1 γ2 γ7 γ4 γ5 γ6 β3 β4 β1 β2 β3 β4 β5 β2
γ4 γ3 γ6 γ1 γ8 γ7 γ2 γ5 β4 β3 β2 β1 β4 β3 β2 β5
γ5 γ2 γ3 γ4 γ1 γ6 γ7 γ8 β5 β2 β3 β4 β1 β2 β3 β4
γ6 γ5 γ8 γ3 γ2 γ1 γ4 γ7 β2 β5 β4 β3 β2 β1 β4 β3
γ7 γ4 γ5 γ6 γ3 γ8 γ1 γ2 β3 β4 β5 β2 β3 β4 β1 β2
γ8 γ7 γ2 γ5 γ4 γ3 γ6 γ1 β4 β3 β2 β5 β4 β3 β2 β1


.
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Example

Det (X )

=

(
(γ1 − γ5)2 + (γ2 − γ6)2 + (γ3 − γ7)2 + (γ4 − γ8)2 − (α1 − α5)(β1 − β5)

)4

·
(

(γ1 − γ2 − γ3 + γ4 + γ5 − γ6 − γ7 + γ8)2 − (α1 − 2(α2 + α3 − α4) + α5)(β1 − 2(β2 + β3 − β4) + β5)

)
·
(

(γ1 − γ2 + γ3 − γ4 + γ5 − γ6 + γ7 − γ8)2 − (α1 − 2(α2 − α3 + α4) + α5)(β1 − 2(β2 − β3 + β4) + β5)

)
·
(

(γ1 + γ2 − γ3 − γ4 + γ5 + γ6 − γ7 − γ8)2 − (α1 + 2(α2 − α3 − α4) + α5)(β1 + 2(β2 − β3 − β4) + β5)

)
·
(

(γ1 + γ2 + γ3 + γ4 + γ5 + γ6 + γ7 + γ8)2 − (α1 + 2(α2 + α3 + α4) + α5)(β1 + 2(β2 + β3 + β4) + β5)

)
,

. Thus,

r = (2, 2, 2, 2, 2), k = (4, 1, 1, 1, 1), d = (4, 1, 1, 1, 1).

This in turn implies

ZΓ'Herm(2;H)⊕ Sym(2;R)⊕ Sym(2;R)⊕ Sym(2;R)⊕ Sym(2;R).

Bartosz Kołodziejek
Model selection in the class of Gaussian models invariant under a subgroup of the symmetric group



Agenda

1 Colored graphical models
2 Main technical results

1 Block decomposition of colored spaces
2 Short intro to representation theory
3 Gamma integrals
4 Structure constants
5 Specification to cyclic groups

3 RCOP-Wishart laws
4 Bayesian model selection

1 Small p example - Frets’ heads
2 Arbitrary p - within cyclic groups (simulations)

5 Future work

Bartosz Kołodziejek
Model selection in the class of Gaussian models invariant under a subgroup of the symmetric group



Cyclic groups

In the case of cyclic Γ the orthogonal matrix UΓ can be constructed
explicitly, and we obtain the structure constants ri , ki and di easily.

Let us consider Γ = 〈σ〉 with

σ = (i1 . . .)︸ ︷︷ ︸
p1

(i2 . . .)︸ ︷︷ ︸
p2

. . . (iC . . .)︸ ︷︷ ︸
pC

Theorem

Let Γ = 〈σ〉 be a cyclic group of order N. For α = 0, 1, . . . , bN2 c set

r∗α = # { c ∈ {1, . . . ,C} ; α pc is a multiple of N }

d∗α =

{
1 (α = 0 or N/2)

2 (otherwise).

Then, L = # {α ; r∗α > 0 },

r = (r∗α; r∗α > 0) and k = d = (d∗α; r∗α > 0).
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Let (ei )
p
i=1 denote the standard basis of Rp.

Theorem

The orthogonal matrix UΓ can constructed by arranging column
vectors v (c)

k in an appropriate order, where v
(c)
1 , . . . , v

(c)
pc ∈ Rp by

v
(c)
1 :=

√
1
pc

pc−1∑
k=0

eσk (ic ),

v
(c)
2β :=

√
2
pc

pc−1∑
k=0

cos
(2πβk

pc

)
eσk (ic ) (1 ¬ β < pc/2),

v
(c)
2β+1 :=

√
2
pc

pc−1∑
k=0

sin
(2πβk

pc

)
eσk (ic ) (1 ¬ β < pc/2),

v (c)
pc :=

√
1
pc

pc−1∑
k=0

cos(πk)eσk (ic ) (if pc is even).
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Example

Let us consider σ =
(
1 2 3

) (
4 5

) (
6
)
∈ S6.

We have p1 = 3, p2 = 2, p3 = 1 and N = LCM(p1, p2, p3) = 6.

We count r∗0 = 3, r∗1 = 0, r∗2 = 1, r∗3 = 1, so that,

r = (3, 1, 1) and d = k = (1, 2, 1).

Thus, ZΓ ' Sym(3;R)⊕Herm(1;C)⊕ Sym(1;R).

Moreover,

UΓ =



1/
√

3 0 0
√

2/3 0 0
1/
√

3 0 0 −
√

1/6 1/
√

2 0
1/
√

3 0 0 −
√

1/6 −1/
√

2 0
0 1/

√
2 0 0 0 1/

√
2

0 1/
√

2 0 0 0 −1/
√

2
0 0 1 0 0 0

 .
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RCOP-Wishart laws

Let πΓ : Sym(p;R)→ ZΓ be the projection

πΓ(x) =
1
|Γ|
∑
σ∈Γ

R(σ) · x · R(σ)>

Let Σ ∈ PΓ ⊂ Sym+(p;R) and let Z1, . . . ,Zn be iid from Np(0, Σ).
Define

Wn = πΓ

(
n∑

i=1

Zi · Z>i

)
.

Theorem

The law of Wn is absolutely continuous if and only if

n ­ n0 := max
i=1,...,L

{
ridi
ki

}
.

If n ­ n0, then its density function is given by

Det (X )n/2 e−
1
2Tr[X ·Σ

−1]

Det (2Σ)n/2 ΓPΓ
( n

2 )
ϕΓ(X )1PΓ

(X ).
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Bayesian model search on all colored spaces seems at the moment
intractable. There are two big obstacles:

1 Lattice structure of {ZΓ ; Γ ⊂ Sp } (or equivalently, of {Γ∗}) is very
complicated and it seems very hard to propose a consistent approach
for travelling through the space of colors.

2 It is in general impossible to find structure constants for arbitrary
group Γ. How about Γ∗?

We are making a small step forward and we propose a model
selection procedure restricted to cyclic colorings, that is, when
Γ = 〈σ〉 for σ ∈ Sp. This smaller space has much better
combinatorial description.
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Bayesian model selection

We take prior on Γ to be uniform on all (cyclic) subgroups of Sp.

Let K = Σ−1. We will assume that K |Γ is the Diaconis-Ylvisaker
conjugate prior for K , that is,

fK |Γ(k) =
1

IΓ(δ,D)
Det (k)(δ−2)/2 e−

1
2Tr[D·k]1PΓ

(k).

We assume that Z1, . . . ,Zn given {K , Γ} are i.i.d. Np(0,K−1)
random vectors with K ∈ PΓ.

Then, it is easily seen that

P(Γ|Z1, . . . ,Zn) ∝
IΓ(δ + n,D +

∑n
i=1 Zi · Z>i )

IΓ(δ,D)
.

For small p we calculate all possibilities.

For big p we run Metropolis-Hastings algorithm.
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In a Bayesian framework, the classical approach for choosing
between two models is to compute their posterior probability density
and choose the model with the highest posterior probability.

We look for

Γ̂ = arg max
Γ

IΓ(δ + n,D +
∑n

i=1 Zi · Z>i )

IΓ(δ,D)
.
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Structure constants for p = 4

There are 22 different RCOP colorings.
Up to conjugacy (renumbering of vertices), there are 8 different
conjugacy classes.

Group (ki ) (ri ) (di )
Γ∗1 = {id} (1) (4) (1)
Γ∗2 = 〈(12)〉, Γ∗3 = 〈(13)〉 (1,1) (3,1) (1,1)
Γ∗4 = 〈(14)〉, Γ∗5 = 〈(23)〉
Γ∗6 = 〈(24)〉, Γ∗7 = 〈(34)〉
Γ∗8 = 〈(123), (12)〉, Γ∗9 = 〈(124), (12)〉 (1,2) (2,1) (1,1)
Γ∗10 = 〈(134), (13)〉, Γ∗11 = 〈(234), (23)〉
Γ∗12 = 〈(12)(34)〉, Γ∗13 = 〈(13)(24)〉 (1,1) (2,2) (1,1)
Γ∗14 = 〈(14)(23)〉
Γ∗15 = 〈(1234), (13)〉, Γ∗16 = 〈(1243), (14)〉 (1,1,2) (1,1,1) (1,1,1)
Γ∗17 = 〈(1324), (12)〉
Γ∗18 = 〈(12), (34)〉, Γ∗19 = 〈(13), (24)〉 (1,1,1) (2,1,1) (1,1,1)
Γ∗20 = 〈(14), (23)〉
Γ∗21 = 〈(12)(34), (14)(23)〉 (1,1,1,1) (1,1,1,1) (1,1,1,1)
Γ∗22 = S4 (1,3) (1,1) (1,1)
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Hasse diagram

Figure borrowed from Gehrmann (2011).
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Frets’ heads

The head dimensions (length Li and breadth Bi , i = 1, 2) of 25 pairs
of first and second sons were measured.

n = 25, p = 4, V = (L1,B1, L2,B2). We take δ = 3.

n∑
i=1

Zi · Z>i =


2287.04 1268.84 1671.88 1106.68
1268.84 1304.64 1231.48 841.28
1671.88 1231.48 2419.36 1356.96
1106.68 841.28 1356.96 1080.56

 .

Posterior probabilities:

D Best model 2nd best 3rd best
I4 Γ∗22 (95.2%) Γ∗16 (2.5%) Γ∗17 (1.3%)

50I4 Γ∗19 (33.8%) Γ∗13 (29.6%) Γ∗8 (13.3%)
100I4 Γ∗13 (39.6%) Γ∗19 (29.8%) Γ∗8 (7.2%)

1000I4 Γ∗1 (38.9%) Γ∗13 (10.5%) Γ∗3 (10.3%)
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Figure borrowed from Gehrmann (2011).

Bartosz Kołodziejek
Model selection in the class of Gaussian models invariant under a subgroup of the symmetric group



D Best model 2nd best 3rd best
I4 Γ∗22 (95.2%) Γ∗16 (2.5%) Γ∗17 (1.3%)

50I4 Γ∗19 (33.8%) Γ∗13 (29.6%) Γ∗8 (13.3%)
100I4 Γ∗13 (39.6%) Γ∗19 (29.8%) Γ∗8 (7.2%)

1000I4 Γ∗1 (38.9%) Γ∗13 (10.5%) Γ∗3 (10.3%)

For different values of D = dI4, the only models with highest
posterior probability are:

Γ∗22 = S4,
Γ∗19 = 〈(13), (24)〉,
Γ∗13 = 〈(13)(24)〉,
Γ∗1 = {id}.

Recall the enumeration of vertices (1, 2, 3, 4) = (L1,B1, L2,B2). The
invariance with respect to the transposition (13) means that L1 is
exchangeable with L2 and, similarly, the invariance with respect to
the transposition (24) implies exchangability of B1 and B2. Both
together correspond to the fact that sons should be exchangable in
some way.
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Markov chain

First, we introduce a Markov chain on the space of all permutations:

σt = σt−1 ◦ xt , (xt)t are i.i.d. transpositions.

(σt)t induces a Markov chain on the space of cyclic groups, (〈σt〉)t ,
but we loose uniformity: it may happen that

〈σt−1 ◦ xt〉 = 〈σt−1 ◦ x ′t〉 for xt 6= x ′t .

We choose the proposal distribution g to be proportional to the
number of possible transitions from 〈σ〉 to 〈σ′〉, that is,

g (〈σ′〉 | 〈σ〉) :=
# { (i , j) ∈ Sp ; σ′ = σ ◦ (i , j) }(

p
2

) .
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Metropolis-Hastings algorithm

Starting from a cyclic group Γ0 = 〈σ0〉, repeat the following two steps for
t = 1, 2, . . .:

1 Sample xt uniformly from the set of all transpositions and set

σt = σt−1 ◦ xt ;

2 Accept the move Γt = 〈σt〉 with probability

min

{
1,

I〈σt〉(δ + n,D + U) · I〈σt−1〉(δ,D)

I〈σt〉(δ,D) · I〈σt−1〉(δ + n,D + U)
· g (〈σt−1〉 | 〈σt〉)
g (〈σt〉 | 〈σt−1〉)

}
If the move is rejected, set Γt = Γt−1 and σt = σt−1.
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p #subgroups of Sp #ZΓ #cyclic groups
1 1 1 1
2 2 2 2
3 6 5 5
4 30 22 17
5 156 93 67
6 1 455 739 362
7 11 300 4 508 2039
8 151 221 ? 14 170
9 1 694 723 ? 109 694
10 29 594 446 ? 976 412
18 7 · 1018 ? 7 · 1014
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Simulations

We choose p = 10, 20

n = p, δ = 3, D = Ip.

Let Σ0 be a symmetric circular matrix of the form

We sample Z1, . . . ,Zn from Np(0, Σ0), where Σ0 is a symmetric
circular matrix

Σ0 is invariant under Γ0 = 〈(1, 2, . . . , p)〉.
We start Metropolis-Hastings algorithm with Γ0 = {id} and iterate
500 000 times.
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p = 10

There are ≈ 9 · 107 cyclic subgroups of Sp.

Z · Z>/n equals

Acceptance rate = 1.0%

〈σ〉 P̂(Γ = 〈σ〉|Z )
〈(0, 2, 4, 6, 8)(1, 3, 5, 7, 9)〉 48.1%
〈(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)〉 21.2%
〈(0, 2, 7, 9, 1, 5, 8, 3, 4, 6)〉 6.1%
〈(0, 2, 4, 6, 7)(1, 3, 5, 8, 9)〉 4.3%
〈(0, 6, 4, 5, 1, 9)(2, 7)(3, 8)〉 1.3%

First model is
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p = 20

There are ≈ 2 · 1017 cyclic subgroups of Sp.

Z · Z>/n equals
Acceptance rate = 0.29%

〈σ〉 P̂(Γ = 〈σ〉|Z )
〈(0− 4, 9− 14, 19)(5, 8)(6, 7)(15, 18)(16, 17)〉 34.6%
〈(0− 5, 8− 15, 18, 19)(6, 7)(16, 17)〉 26.1%
〈(0− 15, 17, 18, 16, 19)〉 16.6%
〈(0− 5, 8− 15, 18, 19)(16, 17)〉 4.4%
〈(0− 5, 8− 15, 18, 19)(6, 7)〉 1.9%

First model is
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Future work

We are able to compute gamma integrals for all RCOP models
within decomposable graphs.

We produce examples outside RCOP, for which we are still able to
compute gamma integrals.

Traveling through the space of models within colored
decomposable graphs.
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Thank you for your attention
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