Model selection in the class of Gaussian models invariant under a subgroup of the symmetric group

Bartosz Kołodziejek

Warsaw University of Technology

Graphical Models: Conditional Independence and Algebraic Structures

Collaboration: Piotr Graczyk (Angers), Hideyuki Ishi (Osaka), Hélène Massam (Toronto)

October 23-25, 2019

Bartosz Kołodziejek

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small p example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Colored graphical models

- 2 Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

- In order to make Graphical Gaussian Models a viable modeling tool when the number of variables outgrows the number of observations, p >> n, Højsgaard and Lauritzen (2008) propose models which impose equality restrictions on certain entries of precision matrix or partial correlation matrix.
- Such models can be represented by **colored graphs**: colored vertices and edges code the equality of entries of the matrix.
- Three types of restrictions on graphical Gaussian models are:
 - RCON models
 - 8 RCOR models
 - RCOP models restrictions on covariance matrix are generated by a permutation subgroup

イロト イポト イヨト イヨト 三日

 $(\mathsf{RCOP}) \subsetneq (\mathsf{RCON}) \cap (\mathsf{RCOR})$

RCOP colored spaces

- We will consider only full graphs.
- For a subgroup Γ ⊂ 𝔅_p, we define the space of symmetric matrices invariant under Γ, or the colored space,

$$\mathcal{Z}_{\Gamma} := \left\{ \, x \in \operatorname{Sym}(p;\mathbb{R}) \, ; \, x_{ij} = x_{\sigma(i)\sigma(j)} \text{ for all } \sigma \in \Gamma \,
ight\}$$
 ,

and the cone of positive definite matrices in \mathcal{Z}_{Γ} ,

$$\mathcal{P}_{\Gamma} := \mathcal{Z}_{\Gamma} \cap \operatorname{Sym}^+(p; \mathbb{R}).$$

Equivalently,

 $\mathcal{Z}_{\Gamma} = \{ x \in \operatorname{Sym}(p; \mathbb{R}); R(\sigma) \cdot x = x \cdot R(\sigma) \text{ for all } \sigma \in \Gamma \}$,

< ロ > < 回 > < 回 > < 回 > < 回 > :

where $R(\sigma)$ denotes the (permutation) matrix of σ .

Example

Let
$$p = 3$$
 and $\Gamma = \langle (123) \rangle$. We have $R((123)) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ and $R((123)) \cdot x = x \cdot R((123))$ implies

 $x = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}.$

Thus,

$$\mathcal{Z}_{\langle (123) \rangle} = \left\{ \left(egin{matrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} ; \ a, b \in \mathbb{R}
ight\}.$$

It is easily seen that we also have

$$\mathcal{Z}_{\mathfrak{S}_3} = \mathcal{Z}_{\langle (123) \rangle}.$$

- Same colored space can be generated by different subgroups.
- Let us define

$$\Gamma^* = \left\{ \, \sigma^* \in \mathfrak{S}_p \, ; \, x_{ij} = x_{\sigma^*(i)\sigma^*(j)} \text{ for all } x \in \mathbb{Z}_{\Gamma} \, \right\}.$$

Clearly, Γ is a subgroup of Γ^* and Γ^* is the unique largest subgroup of \mathfrak{S}_p such that $\mathcal{Z}_{\Gamma^*} = \mathcal{Z}_{\Gamma}$.

• Wielandt (1969) and Siemons (1982, 1983)

Lemma

If
$$\mathcal{Z}_{\langle \sigma_0 \rangle} = \mathcal{Z}_{\langle \sigma \rangle}$$
 for some $\sigma_0, \sigma \in \mathfrak{S}_p$, then $\langle \sigma_0 \rangle = \langle \sigma \rangle$.

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Notation

• We write $B^{\oplus r}$ for $I_r \otimes B$, that is,

$$B^{\oplus r} = \begin{pmatrix} B & & \\ & \ddots & \\ & & B \end{pmatrix}$$

• Let $M_{\mathbb{K}}$ be a real matrix representations of space $\operatorname{Herm}(r; \mathbb{K})$ for $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}.$

•
$$M_{\mathbb{R}} = \mathrm{Id}_{\mathrm{Sym}(r;\mathbb{R})}$$
.

• For $z = a + bi \in \mathbb{C}$ define $M_{\mathbb{C}}(z) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. $r \times r$ complex matrix can be realized as a $(2r) \times (2r)$ real matrix by

setting the correspondence

$$\operatorname{Herm}(r;\mathbb{C})\ni \left(z_{ij}\right)_{1\leqslant ij\leqslant r}\simeq \left(M_{\mathbb{C}}(z_{ij})\right)_{1\leqslant ij\leqslant r}\in \operatorname{Sym}(2r;\mathbb{R}).$$

• Similarly we can define $M_{\mathbb{H}}$: Herm $(r; \mathbb{H}) \to$ Sym $(4r; \mathbb{R})$.

Theorem

The space \mathcal{Z}_{Γ} coincides with

$$\left[\begin{array}{ccc}U_{\Gamma}\begin{pmatrix}M_{\mathbb{K}_{1}}(x_{1})^{\oplus k_{1}/d_{1}}&&\\&\ddots&\\&&M_{\mathbb{K}_{L}}(x_{L})^{\oplus k_{L}/d_{L}}\end{pmatrix}U_{\Gamma}^{\top}; \begin{array}{c}x_{i}\in\operatorname{Herm}(r_{i};\mathbb{K}_{i})\\&i=1,2,\ldots,L\end{array}\right],$$

where

- U_Γ is an orthogonal matrix,
- $(k_i, d_i, r_i)_{i=1}^L$ are the structure constants, which depend on Γ ,
- *M*_K(*x*) is the real symmetric matrix representation of a Hermitian matrix *x* with values in K,

(日)

• $\mathbb{K}_i \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}.$

Andersson (1975), Andersson and Madsen (1998)

• If $X \in \mathcal{Z}_{\Gamma}$ is as above, let $\phi_i(X) := x_i \in \operatorname{Herm}(r_i; \mathbb{K}_i)$.

Example

For p = 3 and $\Gamma = \langle (123) \rangle$, we have

$$\mathcal{Z}_{\Gamma}=\left\{ egin{array}{ccc} \mathsf{a} & b & b \ b & a & b \ b & b & a \end{array}
ight
angle$$
 ; $\mathsf{a},b\in\mathbb{R}
ight\}.$

Let $U_{\Gamma} = \begin{pmatrix} 1/\sqrt{3} & \sqrt{2/3} & 1\\ 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2}\\ 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix}.$

Then,

$$\begin{split} U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma} &= \left\{ \left. \begin{pmatrix} a+2b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{pmatrix} \right. ; \text{ a, } b \in \mathbb{R} \right\} \\ &= \left\{ \left. \begin{pmatrix} x_1 \\ & x_2^{\oplus 2} \end{pmatrix} \right\} ; \text{ } x_1, x_2 \in \mathbb{R} \right\}. \end{split}$$

We have

$$(r_1, r_2) = (d_1, d_2) = (1, 1), \qquad (k_1, k_2) = (1, 2).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

For p = 4 and $\Gamma = \langle (12) \rangle$, we have

$$\mathcal{Z}_{\Gamma} = \left\{ \begin{pmatrix} a & b & c & d \\ b & a & c & d \\ c & c & e & f \\ d & d & f & g \end{pmatrix} ; a, b, c, d, e, f, g \in \mathbb{R} \right\}$$

Let
$$U_{\Gamma} = egin{pmatrix} 1/2 & 1/2 & 0 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 & -1/\sqrt{2} \\ 1/2 & -1/2 & 1/\sqrt{2} & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} & 0 \end{pmatrix}.$$

Then,

$$U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma} = \left\{ \begin{pmatrix} A & B & C & 0 \\ B & D & E & 0 \\ C & E & F & 0 \\ 0 & 0 & 0 & G \end{pmatrix} ; A, B, C, D, E, F, G \in \mathbb{R} \right\}$$

and $(r_1, r_2) = (3, 1)$, $(d_1, d_2) = (1, 1)$, $(k_1, k_2) = (1, 1)$,

$$\mathcal{Z}_{\Gamma} \simeq \operatorname{Sym}(3; \mathbb{R}) \oplus \mathbb{R}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

- Colored graphical models
- 2 Main technical results
 - Block decomposition of colored spaces
 - **②** Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Sketch of the main argument

• $R: \Gamma \mapsto \operatorname{GL}(p; \mathbb{R})$ satisfies

$$R(\sigma \circ \sigma') = R(\sigma) \cdot R(\sigma'), \qquad \sigma, \sigma' \in \mathfrak{S}_p.$$

- In other words, R is a representation of group Γ .
- Observe that for any $\sigma \in \mathfrak{S}_p$

$$R(\sigma)\begin{pmatrix}1\\\vdots\\1\end{pmatrix}=\begin{pmatrix}1\\\vdots\\1\end{pmatrix}.$$

The space W₀ = ℝ(1, 1, ..., 1)^T is a Γ invariant subspace for any subgroup Γ, that is, ∀σ ∈ Γ,

$$\forall w \in W_0 \qquad R(\sigma)w \in W_0.$$

• Similarly for W_0^{\perp} .

Sketch of the main argument

• Let orthogonal matrix U_{Γ} be constructed from a basis of W_0 (first column) and a basis of W_0^{\perp} . Then,

$$U_{\Gamma}^{\top}R(\sigma)U_{\Gamma} = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

Recall that

$$\mathcal{Z}_{\Gamma} = \{ x \in \operatorname{Sym}(p; \mathbb{R}); R(\sigma) \cdot x = x \cdot R(\sigma) \text{ for all } \sigma \in \Gamma \}.$$

• Then $U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$ coincides with

 $\left\{ y \in \operatorname{Sym}(p; \mathbb{R}); [U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}] \cdot y = y \cdot [U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}] \right\}.$

- Block decomposition of U^T_Γ R(σ)U_Γ implies block decomposition of y ∈ U^T_Γ Z_ΓU_Γ.
- In general, there exist proper Γ -invariant subspaces of W_0^{\perp} . Finding them is a very hard task.

・ロ・・ 日・ ・ 田・ ・ 日・ ・ 日・

• Structure constants arise from block decomposition of *R*.

- Colored graphical models
- 2 Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Gamma integrals, part 1

- $\mathcal{P}_{\Gamma} = \mathcal{Z}_{\Gamma} \cap \operatorname{Sym}^+(p; \mathbb{R}), \ \Omega_i := \operatorname{Herm}^+(r_i; \mathbb{K}_i), \ i = 1, \dots, L.$
- For $Y \in \mathcal{P}_{\Gamma}$ define $\varphi_{\Gamma}(Y) = \prod_{i=1}^{L} (\det \phi_{i}(Y))^{-\dim \Omega_{i}/r_{i}}$.

Let

$$I_1 := \int_{\mathcal{P}_{\Gamma}} \operatorname{Det} (X)^{\lambda} e^{-\operatorname{Tr}[Y \cdot X]} \varphi_{\Gamma}(X) \, \mathrm{d} X.$$

Theorem

The integral I_1 converges if and only if

- $\lambda > \max_{i=1,\dots,L} \left\{ \frac{(r_i-1)d_i}{2k_i} \right\}$ and
- $Y \in \operatorname{Sym}^+(p, \mathbb{R}).$

If $Y \in \mathcal{P}_{\Gamma}$, then

$$I_{1} = \frac{e^{-A_{\Gamma}\lambda + B_{\Gamma}}\prod_{i=1}^{L}\Gamma_{\Omega_{i}}(k_{i}\lambda)}{\operatorname{Det}\left(Y\right)^{\lambda}}$$

メロト 不得 ト イヨト イヨト 三日

with A_{Γ} and B_{Γ} depending explicitly on structure constants only.

Gamma integrals, part 2

Define

$$I_2 := \int_{\mathcal{P}_{\Gamma}} \operatorname{Det} (X)^{\lambda} e^{-\operatorname{Tr}[Y \cdot X]} \, \mathrm{d} X.$$

Theorem

The integral I_2 converges if and only if

- $\lambda > \max_{i=1,...,L} \left\{-\frac{1}{k_i}\right\}$ and
- $Y \in \operatorname{Sym}^+(p, \mathbb{R})$.

If $Y\in \mathcal{P}_{\Gamma},$ then

$$I_{2} = e^{-A_{\Gamma}\lambda - B_{\Gamma}} \prod_{i=1}^{L} \Gamma_{\Omega_{i}} \left(k_{i} \lambda + \frac{\dim \Omega_{i}}{r_{i}} \right) \frac{\varphi_{\Gamma}(Y)}{\operatorname{Det}(Y)^{\lambda}}$$

《曰》《卽》《言》《言》

- Colored graphical models
- 2 Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

• If $X \in \mathcal{Z}_{\Gamma}$, then

$$X = U_{\Gamma} \begin{pmatrix} M_{\mathbb{K}_1}(x_1)^{\oplus k_1/d_1} & & \\ & \ddots & \\ & & M_{\mathbb{K}_L}(x_L)^{\oplus k_L/d_L} \end{pmatrix} U_{\Gamma}^{\top}$$

for some $x_i \in \operatorname{Herm}(r_i; \mathbb{K}_i), i = 1, 2, \ldots, L$.

- Recall that $\phi_i(X) := x_i$.
- In order to compute Gamma integrals on \mathcal{P}_{Γ} we need to find $(r_i, d_i, k_i)_{i=1}^L$ and polynomials det $\phi_i(X)$.

• In view of decomposition of $\mathcal{Z}_{\Gamma},$ we have

$$\mathrm{Det}\,(X)=\prod_{i=1}^{L}(\det\phi_i(X))^{k_i},\qquad X\in\mathcal{Z}_{\Gamma}.$$

Assume that we have an irreducible factorization

$$\mathrm{Det}\,(X)=\prod_{j=1}^{L'}f_j(X)^{\mathfrak{a}_j},\qquad X\in\mathcal{Z}_{\Gamma},$$

where

- each a_j is a positive integer,
- each $f_j(X)$ is an irreducible polynomial of $X \in \mathcal{Z}_{\Gamma}$,

•
$$f_i \neq f_j$$
 if $i \neq j$.

• Basing on results in Jordan algebras, we can deduce that

•
$$L = L'$$
,

- for each j, there exists i such that $f_j(X)^{a_j} = (\det \phi_i(X))^{k_i}$.
- $k_i = a_j$ and r_i is the degree of $f_j(X) = \det \phi_i(X)$,
- dim $\Omega_i = r_i + \frac{d_i r_i}{2} = \operatorname{rank}[\operatorname{Hess}(\log f_j)(I)]$

Example

Let $\Gamma = \langle \sigma_1, \sigma_2 \rangle$ be a subgroup of \mathfrak{S}_{16} generated by two permutations

 $\sigma_1 = (1, 2, 5, 6)(3, 4, 7, 8)(9, 10, 13, 14)(11, 12, 15, 16),$ $\sigma_2 = (1, 3, 5, 7)(2, 8, 6, 4)(9, 11, 13, 15)(10, 16, 14, 12).$

The space \mathcal{Z}_{Γ} consists of matrices of the form

/	-						-	-									
_	α_1	α_2	α_3	α_4	α_5	α_2	α_3	α_4	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	γ_8	1
	α_2	α_1	α_4	α_3	α_2	α_5	α_4	α_3	γ_6	γ_1	γ_8	γ_3	γ_2	γ_5	γ_4	γ_7	
	α_3	α_4	α_1	α_2	α_3	α_4	α_5	α_2	γ_7	γ_4	γ_1	γ_6	γ_3	γ_8	γ_5	γ_2	
	α_4	α_3	α_2	α_1	α_4	α_3	α_2	α_5	γ_8	γ_7	γ_2	γ_1	γ_4	γ_3	γ_6	γ_5	
	α_5	α_2	α_3	α_4	α_1	α_2	α_3	α_4	γ_5	γ_6	γ_7	γ_8	γ_1	γ_2	γ_3	γ_4	
	α_2	α_5	α_4	α_3	α_2	α_1	α_4	α_3	γ_2	γ_5	γ_4	γ_7	γ_6	γ_1	γ_8	γ_3	
	α_3	α_4	α_5	α_2	α_3	α_4	α_1	α_2	γ_3	γ_8	γ_5	γ_2	γ_7	γ_4	γ_1	γ_6	
	α_4	α_3	α_2	α_5	α_4	α_3	α_2	α_1	γ_4	γ_3	γ_6	γ_5	γ_8	γ_7	γ_2	γ_1	
	γ_1	γ_6	γ_7	γ_8	γ_5	γ_2	γ_3	γ_4	β_1	β_2	β_3	β_4	β_5	β_2	β_3	β_4	
	γ_2	γ_1	γ_4	γ_7	γ_6	γ_5	γ_8	γ_3	β_2	β_1	β_4	β_3	β_2	β_5	β_4	β_3	
	γ_3	γ_8	γ_1	γ_2	γ_7	γ_4	γ_5	γ_6	β_3	β_4	β_1	β_2	β_3	β_4	β_5	β_2	
	γ_4	γ_3	γ_6	γ_1	γ_8	γ_7	γ_2	γ_5	β_4	β_3	β_2	β_1	β_4	β_3	β_2	β_5	
	γ_5	γ_2	γ_3	γ_4	γ_1	γ_6	γ_7	γ_8	β_5	β_2	β_3	β_4	β_1	β_2	β_3	β_4	
	γ_6	γ_5	γ_8	γ_3	γ_2	γ_1	γ_4	γ_7	β_2	β_5	β_4	β_3	β_2	β_1	β_4	β_3	
	γ_7	γ_4	γ_5	γ_6	γ_3	γ_8	γ_1	γ_2	β_3	β_4	β_5	β_2	β_3	β_4	β_1	β_2	
	γ_8	γ_7	γ_2	γ_5	γ_4	γ_3	γ_6	γ_1	β_4	β_3	β_2	β_5	β_4	β_3	β_2	β_1	,

- < f →

Example

$$\begin{aligned} &= \left((\gamma_1 - \gamma_5)^2 + (\gamma_2 - \gamma_6)^2 + (\gamma_3 - \gamma_7)^2 + (\gamma_4 - \gamma_8)^2 - (\alpha_1 - \alpha_5)(\beta_1 - \beta_5) \right)^4 \\ &\quad \cdot \left((\gamma_1 - \gamma_2 - \gamma_3 + \gamma_4 + \gamma_5 - \gamma_6 - \gamma_7 + \gamma_8)^2 - (\alpha_1 - 2(\alpha_2 + \alpha_3 - \alpha_4) + \alpha_5)(\beta_1 - 2(\beta_2 + \beta_3 - \beta_4) + \beta_5) \right) \\ &\quad \cdot \left((\gamma_1 - \gamma_2 + \gamma_3 - \gamma_4 + \gamma_5 - \gamma_6 + \gamma_7 - \gamma_8)^2 - (\alpha_1 - 2(\alpha_2 - \alpha_3 + \alpha_4) + \alpha_5)(\beta_1 - 2(\beta_2 - \beta_3 + \beta_4) + \beta_5) \right) \\ &\quad \cdot \left((\gamma_1 + \gamma_2 - \gamma_3 - \gamma_4 + \gamma_5 + \gamma_6 - \gamma_7 - \gamma_8)^2 - (\alpha_1 + 2(\alpha_2 - \alpha_3 - \alpha_4) + \alpha_5)(\beta_1 + 2(\beta_2 - \beta_3 - \beta_4) + \beta_5) \right) \\ &\quad \cdot \left((\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + \gamma_5 + \gamma_6 + \gamma_7 + \gamma_8)^2 - (\alpha_1 + 2(\alpha_2 + \alpha_3 + \alpha_4) + \alpha_5)(\beta_1 + 2(\beta_2 + \beta_3 + \beta_4) + \beta_5) \right) . \end{aligned}$$

. Thus,

$$r = (2, 2, 2, 2, 2), \quad k = (4, 1, 1, 1, 1), \quad d = (4, 1, 1, 1, 1).$$

This in turn implies

 $\mathcal{Z}_{\Gamma} \simeq \operatorname{Herm}(2; \mathbb{H}) \oplus \operatorname{Sym}(2; \mathbb{R}) \oplus \operatorname{Sym}(2; \mathbb{R}) \oplus \operatorname{Sym}(2; \mathbb{R}) \oplus \operatorname{Sym}(2; \mathbb{R}).$

3

- Colored graphical models
- 2 Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - **Specification to cyclic groups**
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Cyclic groups

- In the case of cyclic Γ the orthogonal matrix U_Γ can be constructed explicitly, and we obtain the structure constants r_i, k_i and d_i easily.
- Let us consider $\Gamma = \langle \sigma \rangle$ with

$$\sigma = \underbrace{(i_1 \dots)}_{p_1} \underbrace{(i_2 \dots)}_{p_2} \dots \underbrace{(i_C \dots)}_{p_C}$$

Theorem

Let $\Gamma = \langle \sigma \rangle$ be a cyclic group of order N. For $\alpha = 0, 1, \dots, \lfloor \frac{N}{2} \rfloor$ set

$$r_{\alpha}^{*} = \# \{ c \in \{1, \dots, C\} ; \alpha p_{c} \text{ is a multiple of } N \}$$
$$d_{\alpha}^{*} = \begin{cases} 1 & (\alpha = 0 \text{ or } N/2) \\ 2 & (otherwise). \end{cases}$$

Then, $L = \# \{ \alpha ; r_{\alpha}^* > 0 \}$ *,*

$$r = (r_{\alpha}^{*}; r_{\alpha}^{*} > 0)$$
 and $k = d = (d_{\alpha}^{*}; r_{\alpha}^{*} > 0).$

Let $(e_i)_{i=1}^p$ denote the standard basis of \mathbb{R}^p .

Theorem

The orthogonal matrix U_{Γ} **can constructed** by arranging column vectors $v_k^{(c)}$ in an **appropriate** order, where $v_1^{(c)}, \ldots, v_{p_c}^{(c)} \in \mathbb{R}^p$ by

$$\begin{split} v_{1}^{(c)} &:= \sqrt{\frac{1}{p_{c}}} \sum_{k=0}^{p_{c}-1} e_{\sigma^{k}(i_{c})}, \\ v_{2\beta}^{(c)} &:= \sqrt{\frac{2}{p_{c}}} \sum_{k=0}^{p_{c}-1} \cos\left(\frac{2\pi\beta k}{p_{c}}\right) e_{\sigma^{k}(i_{c})} \qquad (1 \leqslant \beta < p_{c}/2), \\ v_{2\beta+1}^{(c)} &:= \sqrt{\frac{2}{p_{c}}} \sum_{k=0}^{p_{c}-1} \sin\left(\frac{2\pi\beta k}{p_{c}}\right) e_{\sigma^{k}(i_{c})} \qquad (1 \leqslant \beta < p_{c}/2), \\ v_{p_{c}}^{(c)} &:= \sqrt{\frac{1}{p_{c}}} \sum_{k=0}^{p_{c}-1} \cos(\pi k) e_{\sigma^{k}(i_{c})} \qquad (if \ p_{c} \ is \ even). \end{split}$$

(日) ト イヨ ト イヨ ト -

Example

- Let us consider $\sigma = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix} \in \mathfrak{S}_6.$
- We have $p_1 = 3$, $p_2 = 2$, $p_3 = 1$ and $N = LCM(p_1, p_2, p_3) = 6$.
- We count $r_0^* = 3$, $r_1^* = 0$, $r_2^* = 1$, $r_3^* = 1$, so that,

r = (3, 1, 1) and d = k = (1, 2, 1).

- Thus, $\mathcal{Z}_{\Gamma} \simeq \operatorname{Sym}(3; \mathbb{R}) \oplus \operatorname{Herm}(1; \mathbb{C}) \oplus \operatorname{Sym}(1; \mathbb{R}).$
- Moreover,

$$U_{\Gamma} = \begin{pmatrix} 1/\sqrt{3} & 0 & 0 & \sqrt{2/3} & 0 & 0 \\ 1/\sqrt{3} & 0 & 0 & -\sqrt{1/6} & 1/\sqrt{2} & 0 \\ 1/\sqrt{3} & 0 & 0 & -\sqrt{1/6} & -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} & 0 & 0 & 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 0 & 0 & 0 & -1/\sqrt{2} \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

メロン メロン メヨン トヨ

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - O Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

RCOP-Wishart laws

• Let $\pi_{\Gamma} \colon \operatorname{Sym}(p; \mathbb{R}) \to \mathcal{Z}_{\Gamma}$ be the projection

$$\pi_{\Gamma}(x) = \frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} R(\sigma) \cdot x \cdot R(\sigma)^{\top}$$

• Let $\Sigma \in \mathcal{P}_{\Gamma} \subset \operatorname{Sym}^+(p; \mathbb{R})$ and let Z_1, \ldots, Z_n be iid from $N_p(0, \Sigma)$. Define

$$W_n = \pi_{\Gamma} \left(\sum_{i=1}^n Z_i \cdot Z_i^{\top} \right).$$

Theorem

The law of W_n is absolutely continuous if and only if

$$n \ge n_0 := \max_{i=1,\ldots,L} \left\{ \frac{r_i d_i}{k_i} \right\}.$$

If $n \ge n_0$, then its density function is given by

$$\frac{\operatorname{Det}(X)^{n/2} e^{-\frac{1}{2}\operatorname{Tr}[X\cdot\Sigma^{-1}]}}{\operatorname{Det}(2\Sigma)^{n/2} \Gamma_{\mathcal{P}_{\Gamma}}(\frac{n}{2})} \varphi_{\Gamma}(X) \mathbf{1}_{\mathcal{P}_{\Gamma}}(X).$$

Bartosz Kołodziejek

- Colored graphical models
- 2 Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

- Bayesian model search on all colored spaces seems at the moment intractable. There are two big **obstacles**:
 - Lattice structure of { Z_Γ ; Γ ⊂ G_p } (or equivalently, of {Γ*}) is very complicated and it seems very hard to propose a consistent approach for travelling through the space of colors.
 - It is in general impossible to find structure constants for arbitrary group Γ. How about Γ*?
- We are making a small step forward and we propose a model selection procedure restricted to cyclic colorings, that is, when Γ = ⟨σ⟩ for σ ∈ 𝔅_p. This smaller space has much better combinatorial description.

Bayesian model selection

- We take prior on Γ to be uniform on all (cyclic) subgroups of \mathfrak{S}_p .
- Let K = Σ⁻¹. We will assume that K|Γ is the Diaconis-Ylvisaker conjugate prior for K, that is,

$$f_{K|\Gamma}(k) = \frac{1}{I_{\Gamma}(\delta, D)} \operatorname{Det}(k)^{(\delta-2)/2} e^{-\frac{1}{2}\operatorname{Tr}[D \cdot k]} \mathbf{1}_{\mathcal{P}_{\Gamma}}(k).$$

- We assume that Z_1, \ldots, Z_n given $\{K, \Gamma\}$ are i.i.d. $N_p(0, K^{-1})$ random vectors with $K \in \mathcal{P}_{\Gamma}$.
- Then, it is easily seen that

$$\mathbb{P}(\Gamma|Z_1,\ldots,Z_n) \propto \frac{I_{\Gamma}(\delta+n,D+\sum_{i=1}^n Z_i \cdot Z_i^{\top})}{I_{\Gamma}(\delta,D)}$$

イロン メロシ イヨン イヨン

- For small p we calculate all possibilities.
- For big p we run Metropolis-Hastings algorithm.

- In a Bayesian framework, the classical approach for choosing between two models is to compute their posterior probability density and choose the model with the highest posterior probability.
- We look for

$$\hat{\Gamma} = \arg \max_{\Gamma} \frac{I_{\Gamma}(\delta + n, D + \sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top})}{I_{\Gamma}(\delta, D)}$$

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

Structure constants for p = 4

- There are 22 different RCOP colorings.
- Up to conjugacy (renumbering of vertices), there are 8 different conjugacy classes.

Group	(k_i)	(r_i)	(d_i)
$\Gamma_1^* = \{ \mathrm{id} \}$	(1)	(4)	(1)
$\Gamma_2^* = \langle (12) \rangle, \qquad \Gamma_3^* = \langle (13) \rangle$	(1,1)	(3,1)	(1,1)
$\Gamma_4^* = \langle (14) angle, \qquad \Gamma_5^* = \langle (23) angle$			
$\Gamma_6^* = \langle (24) angle, \qquad \Gamma_7^* = \langle (34) angle$			
$ \overline{\Gamma_8^*} = \langle (123), (12) \rangle, \overline{\Gamma_9^*} = \langle (124), (12) \rangle $	(1,2)	(2,1)	(1,1)
$\Gamma_{10}^{*} = \langle (134), (13) \rangle, \Gamma_{11}^{*} = \langle (234), (23) \rangle$			
$\Gamma_{12}^* = \langle (12)(34) \rangle, \qquad \Gamma_{13}^* = \langle (13)(24) \rangle$	(1,1)	(2,2)	(1,1)
$\Gamma^*_{14}=\langle (14)(23) angle$			
$\Gamma_{15}^* = \langle (1234), (13) \rangle, \ \Gamma_{16}^* = \langle (1243), (14) \rangle$	(1,1,2)	(1,1,1)	(1,1,1)
$\Gamma^*_{17}=\langle (1324),(12) angle$			
$\Gamma_{18}^* = \langle (12), (34) angle, \Gamma_{19}^* = \langle (13), (24) angle$	(1,1,1)	(2,1,1)	(1,1,1)
$\Gamma^*_{20}=\langle (14),(23) angle$			
$\Gamma_{21}^* = \langle (12)(34), (14)(23) \rangle$	(1,1,1,1)	(1,1,1,1)	(1,1,1,1)
$\Gamma_{22}^* = \mathfrak{S}_4$	(1,3)	(1,1)	(1,1)

Bartosz Kołodziejek

A D > A B > A B > A B >

3

Figure borrowed from Gehrmann (2011).

Frets' heads

• The head dimensions (length L_i and breadth B_i , i = 1, 2) of 25 pairs of first and second sons were measured.

•
$$n = 25$$
, $p = 4$, $V = (L_1, B_1, L_2, B_2)$. We take $\delta = 3$.

	/2287.04	1268.84	1671.88	1106.68
$\sum_{n=1}^{n} \mathbf{z} \mathbf{z}^{\top}$	1268.84	1304.64	1231.48	841.28
$\sum_{i \neq j} Z_i \cdot Z_i =$	1671.88	1231.48	2419.36	1356.96
/=1	1106.68	841.28	1356.96	1080.56/

• Posterior probabilities:

	D	D Best model		2r	nd best	3rd best		
	<i>I</i> 4	Γ*22	(95.2%)	Γ_{16}^*	(2.5%)	Γ_{17}^*	(1.3%)	
	50 <i>1</i> 4	Γ_{19}^*	(33.8%)	Γ_{13}^*	(29.6%)	Γ*	(13.3%)	
	100 <i>I</i> 4	Γ_{13}^*	(39.6%)	Γ_{19}^*	(29.8%)	Γ*	(7.2%)	
1	000 <i>I</i> 4	Γ_1^*	(38.9%)	Γ_{13}^*	(10.5%)	Γ ₃	(10.3%)	

Figure borrowed from Gehrmann (2011).

D	Best model		2r	nd best	3rd best		
<i>I</i> 4	Γ*22	(95.2%)	Γ_{16}^*	(2.5%)	Γ_{17}^{*}	(1.3%)	
50 <i>1</i> 4	Γ_{19}^*	(33.8%)	Γ_{13}^*	(29.6%)	Γ*	(13.3%)	
100 <i>I</i> ₄	Γ_{13}^{*}	(39.6%)	Γ_{19}^{*}	(29.8%)	Γ*	(7.2%)	
1000 <i>I</i> ₄	Γ_1^*	(38.9%)	Γ ₁₃ *	(10.5%)	Γ3	(10.3%)	

- For different values of $D = dI_4$, the only models with highest posterior probability are:
 - $\Gamma_{22}^* = \mathfrak{S}_4$,
 - $\Gamma_{19}^* = \langle (13), (24) \rangle$,
 - $\Gamma_{13}^* = \langle (13)(24) \rangle$,
 - $\Gamma_1^* = {\mathrm{id}}.$
- Recall the enumeration of vertices $(1, 2, 3, 4) = (L_1, B_1, L_2, B_2)$. The invariance with respect to the transposition (13) means that L_1 is exchangeable with L_2 and, similarly, the invariance with respect to the transposition (24) implies exchangability of B_1 and B_2 . Both together correspond to the fact that sons should be exchangable in some way.

(日)

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)
- Suture work

• First, we introduce a Markov chain on the space of all permutations:

 $\sigma_t = \sigma_{t-1} \circ x_t$, $(x_t)_t$ are i.i.d. transpositions.

 (σ_t)_t induces a Markov chain on the space of cyclic groups, (⟨σ_t⟩)_t, but we loose uniformity: it may happen that

$$\langle \sigma_{t-1} \circ x_t \rangle = \langle \sigma_{t-1} \circ x'_t \rangle$$
 for $x_t \neq x'_t$.

 We choose the proposal distribution g to be proportional to the number of possible transitions from (σ) to (σ'), that is,

$$g\left(\langle \sigma' \rangle \,|\, \langle \sigma \rangle\right) := \frac{\#\left\{\left(i,j\right) \in \mathfrak{S}_{p} \,;\, \sigma' = \sigma \circ (i,j)\right\}}{\binom{p}{2}}$$

Starting from a cyclic group $\Gamma_0 = \langle \sigma_0 \rangle$, repeat the following two steps for $t = 1, 2, \ldots$:

Sample x_t uniformly from the set of all transpositions and set

$$\sigma_t = \sigma_{t-1} \circ x_t;$$

2 Accept the move $\Gamma_t = \langle \sigma_t \rangle$ with probability

$$\min\left\{1,\frac{I_{\langle\sigma_t\rangle}(\delta+n,D+U)\cdot I_{\langle\sigma_{t-1}\rangle}(\delta,D)}{I_{\langle\sigma_t\rangle}(\delta,D)\cdot I_{\langle\sigma_{t-1}\rangle}(\delta+n,D+U)}\cdot\frac{g\left(\langle\sigma_{t-1}\rangle\,|\,\langle\sigma_t\rangle\right)}{g\left(\langle\sigma_t\rangle\,|\,\langle\sigma_{t-1}\rangle\right)}\right\}$$

If the move is rejected, set $\Gamma_t = \Gamma_{t-1}$ and $\sigma_t = \sigma_{t-1}$.

p	$ $ #subgroups of \mathfrak{S}_p	$\#\mathcal{Z}_{\Gamma}$	#cyclic groups
1	1	1	1
2	2	2	2
3	6	5	5
4	30	22	17
5	156	93	67
6	1 455	739	362
7	11 300	4 508	2039
8	151 221	?	14 170
9	1 694 723	?	109 694
10	29 594 446	?	976 412
18	$7\cdot 10^{18}$?	$7\cdot 10^{14}$

・ロ> ・回> ・ヨ> ・ヨ> ・ヨ、 のへで、

Simulations

- We choose *p* = 10, 20
- $n = p, \ \delta = 3, \ D = I_p.$
- \bullet Let Σ_0 be a symmetric circular matrix of the form

- We sample Z₁,..., Z_n from N_p(0, Σ₀), where Σ₀ is a symmetric circular matrix
- Σ_0 is invariant under $\Gamma_0 = \langle (1, 2, \dots, p) \rangle$.
- We start Metropolis-Hastings algorithm with $\Gamma_0=\{\mathrm{id}\}$ and iterate 500 000 times.

< □ > < □ > < □ > < □ > < □ >

p = 10

• There are $\approx 9 \cdot 10^7$ cyclic subgroups of \mathfrak{S}_p .

- $\underline{Z} \cdot \underline{Z}^{\top} / n$ equals
- Acceptance rate = 1.0%

First model is

Bartosz Kołodziejek

p = 20

• There are $\approx 2 \cdot 10^{17}$ cyclic subgroups of \mathfrak{S}_p .

- $\underline{Z} \cdot \underline{Z}^{\top} / n$ equals
- Acceptance rate = 0.29%

• First model is

Bartosz Kołodziejek

- Colored graphical models
- Main technical results
 - Block decomposition of colored spaces
 - Short intro to representation theory
 - Gamma integrals
 - O Structure constants
 - Specification to cyclic groups
- RCOP-Wishart laws
- Bayesian model selection
 - Small *p* example Frets' heads
 - Arbitrary p within cyclic groups (simulations)

Future work

- We are able to compute gamma integrals for all RCOP models within **decomposable graphs**.
- We produce examples **outside RCOP**, for which we are still able to compute gamma integrals.
- Traveling through the space of models within **colored decomposable graphs**.

Thank you for your attention

Bartosz Kołodziejek

メロトメ 四トメ ヨトメ ヨト

- Andersson, S. A. (1975) Invariant normal models. Ann. Statist., **3**, 132–154.
- Andersson, S. A. and Madsen, J. (1998) Symmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist., 26, 525–572.
- Gehrmann, H. (2011) Lattices of graphical Gaussian models with symmetries. *Symmetry*, **3**, 653–679.,
- Højsgaard, S. and Lauritzen, S. L. (2008) Graphical Gaussian models with edge and vertex symmetries. J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 1005–1027.
- Siemons, J. (1982) On partitions and permutation groups on unordered sets. *Arch. Math. (Basel)*, **38**, 391–403.
- Siemons, J. (1983) Automorphism groups of graphs. Arch. Math. (Basel), **41**, 379–384.
- Wielandt, H. (1969) Permutation groups through invariant relations and invariant functions. Lect. Notes Dept. Math. Ohio St. Univ. Columbus.
- Graczyk, P., Ishi. H, Kołodziejek, B., Massam, H. (2019) *Model selection in the space of Gaussian models invariant by symmetry.* **In preparation**.

・ロ・・回・・ヨ・・ヨ・ うへつ