Model selection in the class of Gaussian models invariant under a subgroup of the symmetric group

Bartosz Kołodziejek
Warsaw University of Technology

Graphical Models: Conditional Independence and Algebraic Structures

Collaboration: Piotr Graczyk (Angers), Hideyuki Ishi (Osaka), Hélène Massam (Toronto)

October 23-25, 2019
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work

- In order to make Graphical Gaussian Models a viable modeling tool when the number of variables outgrows the number of observations, $p \gg n$, Højsgaard and Lauritzen (2008) propose models which impose equality restrictions on certain entries of precision matrix or partial correlation matrix.
- Such models can be represented by colored graphs: colored vertices and edges code the equality of entries of the matrix.
- Three types of restrictions on graphical Gaussian models are:
(1) RCON models
(3) RCOR models
((RCOP models - restrictions on covariance matrix are generated by a permutation subgroup

$$
(R C O P) \subsetneq(R C O N) \cap(R C O R)
$$

- We will consider only full graphs.
- For a subgroup $\Gamma \subset \mathfrak{S}_{p}$, we define the space of symmetric matrices invariant under Γ, or the colored space,

$$
\mathcal{Z}_{\Gamma}:=\left\{x \in \operatorname{Sym}(p ; \mathbb{R}) ; x_{i j}=x_{\sigma(i) \sigma(j)} \text { for all } \sigma \in \Gamma\right\}
$$

and the cone of positive definite matrices in \mathcal{Z}_{Γ},

$$
\mathcal{P}_{\Gamma}:=\mathcal{Z}_{\Gamma} \cap \operatorname{Sym}^{+}(p ; \mathbb{R})
$$

- Equivalently,

$$
\mathcal{Z}_{\Gamma}=\{x \in \operatorname{Sym}(p ; \mathbb{R}) ; R(\sigma) \cdot x=x \cdot R(\sigma) \text { for all } \sigma \in \Gamma\}
$$

where $R(\sigma)$ denotes the (permutation) matrix of σ.

Example

Let $p=3$ and $\Gamma=\langle(123)\rangle$. We have $R((123))=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ and $R((123)) \cdot x=x \cdot R((123))$ implies

$$
x=\left(\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right)
$$

Thus,

$$
\mathcal{Z}_{\langle(123)\rangle}=\left\{\left(\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right) ; a, b \in \mathbb{R}\right\} .
$$

It is easily seen that we also have

$$
\mathcal{Z}_{\mathfrak{S}_{3}}=\mathcal{Z}_{\langle(123)\rangle} .
$$

- Same colored space can be generated by different subgroups.
- Let us define

$$
\Gamma^{*}=\left\{\sigma^{*} \in \mathfrak{S}_{p} ; x_{i j}=x_{\sigma^{*}(i) \sigma^{*}(j)} \text { for all } x \in \mathcal{Z}_{\Gamma}\right\}
$$

Clearly, Γ is a subgroup of Γ^{*} and Γ^{*} is the unique largest subgroup of \mathfrak{S}_{p} such that $\mathcal{Z}_{\Gamma^{*}}=\mathcal{Z}_{\Gamma}$.

- Wielandt (1969) and Siemons (1982, 1983)

Lemma

If $\mathcal{Z}_{\left\langle\sigma_{0}\right\rangle}=\mathcal{Z}_{\langle\sigma\rangle}$ for some $\sigma_{0}, \sigma \in \mathfrak{S}_{p}$, then $\left\langle\sigma_{0}\right\rangle=\langle\sigma\rangle$.
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups

- RCOP-Wishart laws
(- Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
- Future work
- We write $B^{\oplus r}$ for $I_{r} \otimes B$, that is,

$$
B^{\oplus r}=\left(\begin{array}{lll}
B & & \\
& \ddots & \\
& & B
\end{array}\right)
$$

- Let $M_{\mathbb{K}}$ be a real matrix representations of space $\operatorname{Herm}(r ; \mathbb{K})$ for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.
- $M_{\mathbb{R}}=\operatorname{Id}_{\text {Sym }(r ; \mathbb{R})}$.
- For $z=a+b i \in \mathbb{C}$ define $M_{\mathbb{C}}(z)=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$.
$r \times r$ complex matrix can be realized as a $(2 r) \times(2 r)$ real matrix by setting the correspondence

$$
\operatorname{Herm}(r ; \mathbb{C}) \ni\left(z_{i, j}\right)_{1 \leqslant i, j \leqslant r} \simeq\left(M_{\mathbb{C}}\left(z_{i, j}\right)\right)_{1 \leqslant i, j \leqslant r} \in \operatorname{Sym}(2 r ; \mathbb{R}) .
$$

- Similarly we can define $M_{\mathbb{H}}: \operatorname{Herm}(r ; \mathbb{H}) \rightarrow \operatorname{Sym}(4 r ; \mathbb{R})$.

Theorem

The space \mathcal{Z}_{Γ} coincides with

$$
\left\{U_{\Gamma}\left(\begin{array}{ccc}
M_{\mathbb{K}_{1}}\left(x_{1}\right)^{\oplus k_{1} / d_{1}} & & \\
& \ddots & \\
& & M_{\mathbb{K}_{L}}\left(x_{L}\right)^{\oplus k_{L} / d_{L}}
\end{array}\right) U_{\Gamma}^{\top} ; \quad \begin{array}{c}
x_{i} \in \operatorname{Herm}\left(r_{i} ; \mathbb{K}_{i}\right) \\
\end{array}\right\}
$$

where

- U_{Γ} is an orthogonal matrix,
- $\left(k_{i}, d_{i}, r_{i}\right)_{i=1}^{L}$ are the structure constants, which depend on Γ,
- $M_{\mathbb{K}}(x)$ is the real symmetric matrix representation of a Hermitian matrix x with values in \mathbb{K},
- $\mathbb{K}_{i} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.

Andersson (1975), Andersson and Madsen (1998)

- If $X \in \mathcal{Z}_{\Gamma}$ is as above, let $\phi_{i}(X):=x_{i} \in \operatorname{Herm}\left(r_{i} ; \mathbb{K}_{i}\right)$.

Example

For $p=3$ and $\Gamma=\langle(123)\rangle$, we have

$$
\mathcal{Z}_{\Gamma}=\left\{\left(\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right) ; a, b \in \mathbb{R}\right\} .
$$

Let $U_{\Gamma}=\left(\begin{array}{ccc}1 / \sqrt{3} & \sqrt{2 / 3} & 1 \\ 1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2}\end{array}\right)$.
Then,

$$
\begin{aligned}
U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma} & =\left\{\left(\begin{array}{ccc}
a+2 b & 0 & 0 \\
0 & a-b & 0 \\
0 & 0 & a-b
\end{array}\right) ; a, b \in \mathbb{R}\right\} \\
& =\left\{\left(\begin{array}{cc}
x_{1} & \\
& x_{2}^{\oplus 2}
\end{array}\right) ; x_{1}, x_{2} \in \mathbb{R}\right\} .
\end{aligned}
$$

We have

$$
\left(r_{1}, r_{2}\right)=\left(d_{1}, d_{2}\right)=(1,1), \quad\left(k_{1}, k_{2}\right)=(1,2) .
$$

Example

For $p=4$ and $\Gamma=\langle(12)\rangle$, we have

$$
\mathcal{Z}_{\Gamma}=\left\{\left(\begin{array}{llll}
a & b & c & d \\
b & a & c & d \\
c & c & e & f \\
d & d & f & g
\end{array}\right) ; a, b, c, d, e, f, g \in \mathbb{R}\right\} .
$$

Let $U_{\Gamma}=\left(\begin{array}{cccc}1 / 2 & 1 / 2 & 0 & 1 / \sqrt{2} \\ 1 / 2 & 1 / 2 & 0 & -1 / \sqrt{2} \\ 1 / 2 & -1 / 2 & 1 / \sqrt{2} & 0 \\ 1 / 2 & -1 / 2 & -1 / \sqrt{2} & 0\end{array}\right)$.
Then,

$$
U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}=\left\{\left(\begin{array}{llll}
A & B & C & 0 \\
B & D & E & 0 \\
C & E & F & 0 \\
0 & 0 & 0 & G
\end{array}\right) ; A, B, C, D, E, F, G \in \mathbb{R}\right\}
$$

and $\left(r_{1}, r_{2}\right)=(3,1),\left(d_{1}, d_{2}\right)=(1,1),\left(k_{1}, k_{2}\right)=(1,1)$, $\mathcal{Z}_{\Gamma} \simeq \operatorname{Sym}(3 ; \mathbb{R}) \oplus \mathbb{R}$.
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups

- RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work
- $R: \Gamma \mapsto \mathrm{GL}(p ; \mathbb{R})$ satisfies

$$
R\left(\sigma \circ \sigma^{\prime}\right)=R(\sigma) \cdot R\left(\sigma^{\prime}\right), \quad \sigma, \sigma^{\prime} \in \mathfrak{S}_{p}
$$

- In other words, R is a representation of group Γ.
- Observe that for any $\sigma \in \mathfrak{S}_{p}$

$$
R(\sigma)\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

- The space $W_{0}=\mathbb{R}(1,1, \ldots, 1)^{\top}$ is a Γ invariant subspace for any subgroup Γ, that is, $\forall \sigma \in \Gamma$,

$$
\forall w \in W_{0} \quad R(\sigma) w \in W_{0} .
$$

- Similarly for W_{0}^{\perp}.
- Let orthogonal matrix U_{Γ} be constructed from a basis of W_{0} (first column) and a basis of W_{0}^{\perp}. Then,

$$
U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right)
$$

- Recall that

$$
\mathcal{Z}_{\Gamma}=\{x \in \operatorname{Sym}(p ; \mathbb{R}) ; R(\sigma) \cdot x=x \cdot R(\sigma) \text { for all } \sigma \in \Gamma\}
$$

- Then $U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$ coincides with

$$
\left\{y \in \operatorname{Sym}(p ; \mathbb{R}) ;\left[U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}\right] \cdot y=y \cdot\left[U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}\right]\right\}
$$

- Block decomposition of $U_{\Gamma}^{\top} R(\sigma) U_{\Gamma}$ implies block decomposition of $y \in U_{\Gamma}^{\top} \mathcal{Z}_{\Gamma} U_{\Gamma}$.
- In general, there exist proper Γ-invariant subspaces of W_{0}^{\perp}. Finding them is a very hard task.
- Structure constants arise from block decomposition of R.
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work

Gamma integrals, part 1

- $\mathcal{P}_{\Gamma}=\mathcal{Z}_{\Gamma} \cap \operatorname{Sym}^{+}(p ; \mathbb{R}), \Omega_{i}:=\operatorname{Herm}^{+}\left(r_{i} ; \mathbb{K}_{i}\right), i=1, \ldots, L$.
- For $Y \in \mathcal{P}_{\Gamma}$ define $\varphi_{\Gamma}(Y)=\prod_{i=1}^{L}\left(\operatorname{det} \phi_{i}(Y)\right)^{-\operatorname{dim} \Omega_{i} / r_{i}}$.
- Let

$$
\iota_{1}:=\int_{\mathcal{P}_{\mathrm{r}}} \operatorname{Det}(X)^{\lambda} e^{-\operatorname{Tr}[Y \cdot X]} \varphi_{\Gamma}(X) \mathrm{d} X .
$$

Theorem

The integral I_{1} converges if and only if

- $\lambda>\max _{i=1, \ldots, L}\left\{\frac{\left(r_{i}-1\right) d_{i}}{2 k_{i}}\right\}$ and
- $Y \in \operatorname{Sym}^{+}(p, \mathbb{R})$.

If $Y \in \mathcal{P}_{\Gamma}$, then

$$
I_{1}=\frac{e^{-A_{\Gamma} \lambda+B_{\Gamma}} \prod_{i=1}^{L} \Gamma_{\Omega_{i}}\left(k_{i} \lambda\right)}{\operatorname{Det}(Y)^{\lambda}}
$$

with A_{Γ} and B_{Γ} depending explicitly on structure constants only.

Gamma integrals, part 2

- Define

$$
I_{2}:=\int_{\mathcal{P}_{\Gamma}} \operatorname{Det}(X)^{\lambda} e^{-\operatorname{Tr}[Y \cdot X]} \mathrm{d} X
$$

Theorem

The integral I_{2} converges if and only if

- $\lambda>\max _{i=1, \ldots, L}\left\{-\frac{1}{k_{i}}\right\}$ and
- $Y \in \operatorname{Sym}^{+}(p, \mathbb{R})$.

If $Y \in \mathcal{P}_{\Gamma}$, then

$$
I_{2}=e^{-A_{\Gamma} \lambda-B_{\Gamma}} \prod_{i=1}^{L} \Gamma_{\Omega_{i}}\left(k_{i} \lambda+\frac{\operatorname{dim} \Omega_{i}}{r_{i}}\right) \frac{\varphi_{\Gamma}(Y)}{\operatorname{Det}(Y)^{\lambda}} .
$$

(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)

- Future work
- If $X \in \mathcal{Z}_{\Gamma}$, then

$$
X=U_{\Gamma}\left(\begin{array}{ccc}
M_{\mathbb{K}_{1}}\left(x_{1}\right)^{\oplus k_{1} / d_{1}} & & \\
& \ddots & \\
& & M_{\mathbb{K}_{L}}\left(x_{L}\right)^{\oplus k_{L} / d_{L}}
\end{array}\right) U_{\Gamma}^{\top}
$$

for some $x_{i} \in \operatorname{Herm}\left(r_{i} ; \mathbb{K}_{i}\right), i=1,2, \ldots, L$.

- Recall that $\phi_{i}(X):=x_{i}$.
- In order to compute Gamma integrals on \mathcal{P}_{Γ} we need to find $\left(r_{i}, d_{i}, k_{i}\right)_{i=1}^{L}$ and polynomials $\operatorname{det} \phi_{i}(X)$.
- In view of decomposition of \mathcal{Z}_{Γ}, we have

$$
\operatorname{Det}(X)=\prod_{i=1}^{L}\left(\operatorname{det} \phi_{i}(X)\right)^{k_{i}}, \quad X \in \mathcal{Z}_{\Gamma}
$$

- Assume that we have an irreducible factorization

$$
\operatorname{Det}(X)=\prod_{j=1}^{L^{\prime}} f_{j}(X)^{a_{j}}, \quad X \in \mathcal{Z}_{\Gamma},
$$

where

- each a_{j} is a positive integer,
- each $f_{j}(X)$ is an irreducible polynomial of $X \in \mathcal{Z}_{\Gamma}$,
- $f_{i} \neq f_{j}$ if $i \neq j$.
- Basing on results in Jordan algebras, we can deduce that
- $L=L^{\prime}$,
- for each j, there exists i such that $f_{j}(X)^{a_{j}}=\left(\operatorname{det} \phi_{i}(X)\right)^{k_{i}}$.
- $k_{i}=a_{j}$ and r_{i} is the degree of $f_{j}(X)=\operatorname{det} \phi_{i}(X)$,
- $\operatorname{dim} \Omega_{i}=r_{i}+d_{i} r_{i} \frac{\left(r_{i}-1\right)}{2}=\operatorname{rank}\left[\operatorname{Hess}\left(\log f_{j}\right)(I)\right]$

Example

Let $\boldsymbol{\Gamma}=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ be a subgroup of \mathfrak{S}_{16} generated by two permutations

$$
\begin{aligned}
& \sigma_{1}=(1,2,5,6)(3,4,7,8)(9,10,13,14)(11,12,15,16), \\
& \sigma_{2}=(1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12) .
\end{aligned}
$$

The space \mathcal{Z}_{Γ} consists of matrices of the form

$$
\left(\begin{array}{llllllll|llllllll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5} & \gamma_{6} & \gamma_{7} & \gamma_{8} \\
\alpha_{2} & \alpha_{1} & \alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{5} & \alpha_{4} & \alpha_{3} & \gamma_{6} & \gamma_{1} & \gamma_{8} & \gamma_{3} & \gamma_{2} & \gamma_{5} & \gamma_{4} & \gamma_{7} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{2} & \gamma_{7} & \gamma_{4} & \gamma_{1} & \gamma_{6} & \gamma_{3} & \gamma_{8} & \gamma_{5} & \gamma_{2} \\
\alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{1} & \alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{5} & \gamma_{8} & \gamma_{7} & \gamma_{2} & \gamma_{1} & \gamma_{4} & \gamma_{3} & \gamma_{6} & \gamma_{5} \\
\alpha_{5} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \gamma_{5} & \gamma_{6} & \gamma_{7} & \gamma_{8} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} \\
\alpha_{2} & \alpha_{5} & \alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{1} & \alpha_{4} & \alpha_{3} & \gamma_{2} & \gamma_{5} & \gamma_{4} & \gamma_{7} & \gamma_{6} & \gamma_{1} & \gamma_{8} & \gamma_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \gamma_{3} & \gamma_{8} & \gamma_{5} & \gamma_{2} & \gamma_{7} & \gamma_{4} & \gamma_{1} & \gamma_{6} \\
\alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{5} & \alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{1} & \gamma_{4} & \gamma_{3} & \gamma_{6} & \gamma_{5} & \gamma_{8} & \gamma_{7} & \gamma_{2} & \gamma_{1} \\
\hline \gamma_{1} & \gamma_{6} & \gamma_{7} & \gamma_{8} & \gamma_{5} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} & \beta_{2} & \beta_{3} & \beta_{4} \\
\gamma_{2} & \gamma_{1} & \gamma_{4} & \gamma_{7} & \gamma_{6} & \gamma_{5} & \gamma_{8} & \gamma_{3} & \beta_{2} & \beta_{1} & \beta_{4} & \beta_{3} & \beta_{2} & \beta_{5} & \beta_{4} & \beta_{3} \\
\gamma_{3} & \gamma_{8} & \gamma_{1} & \gamma_{2} & \gamma_{7} & \gamma_{4} & \gamma_{5} & \gamma_{6} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} & \beta_{2} \\
\gamma_{4} & \gamma_{3} & \gamma_{6} & \gamma_{1} & \gamma_{8} & \gamma_{7} & \gamma_{2} & \gamma_{5} & \beta_{4} & \beta_{3} & \beta_{2} & \beta_{1} & \beta_{4} & \beta_{3} & \beta_{2} & \beta_{5} \\
\gamma_{5} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{6} & \gamma_{7} & \gamma_{8} & \beta_{5} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} \\
\gamma_{6} & \gamma_{5} & \gamma_{8} & \gamma_{3} & \gamma_{2} & \gamma_{1} & \gamma_{4} & \gamma_{7} & \gamma_{6} & \gamma_{2} & \gamma_{1} & \beta_{3} & \beta_{5} & \beta_{3} & \beta_{5} & \beta_{3} \\
\gamma_{2} & \beta_{2} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{4} & \beta_{4} & \beta_{3} \\
\gamma_{3} & \beta_{3} & \beta_{2} & \beta_{1}
\end{array}\right)
$$

Example

$\operatorname{Det}(X)$

$$
\begin{aligned}
& =\left(\left(\gamma_{1}-\gamma_{5}\right)^{2}+\left(\gamma_{2}-\gamma_{6}\right)^{2}+\left(\gamma_{3}-\gamma_{7}\right)^{2}+\left(\gamma_{4}-\gamma_{8}\right)^{2}-\left(\alpha_{1}-\alpha_{5}\right)\left(\beta_{1}-\beta_{5}\right)\right)^{4} \\
& \cdot\left(\left(\gamma_{1}-\gamma_{2}-\gamma_{3}+\gamma_{4}+\gamma_{5}-\gamma_{6}-\gamma_{7}+\gamma_{8}\right)^{2}-\left(\alpha_{1}-2\left(\alpha_{2}+\alpha_{3}-\alpha_{4}\right)+\alpha_{5}\right)\left(\beta_{1}-2\left(\beta_{2}+\beta_{3}-\beta_{4}\right)+\beta_{5}\right)\right) \\
& \cdot\left(\left(\gamma_{1}-\gamma_{2}+\gamma_{3}-\gamma_{4}+\gamma_{5}-\gamma_{6}+\gamma_{7}-\gamma_{8}\right)^{2}-\left(\alpha_{1}-2\left(\alpha_{2}-\alpha_{3}+\alpha_{4}\right)+\alpha_{5}\right)\left(\beta_{1}-2\left(\beta_{2}-\beta_{3}+\beta_{4}\right)+\beta_{5}\right)\right) \\
& \cdot\left(\left(\gamma_{1}+\gamma_{2}-\gamma_{3}-\gamma_{4}+\gamma_{5}+\gamma_{6}-\gamma_{7}-\gamma_{8}\right)^{2}-\left(\alpha_{1}+2\left(\alpha_{2}-\alpha_{3}-\alpha_{4}\right)+\alpha_{5}\right)\left(\beta_{1}+2\left(\beta_{2}-\beta_{3}-\beta_{4}\right)+\beta_{5}\right)\right) \\
& \cdot\left(\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}+\gamma_{5}+\gamma_{6}+\gamma_{7}+\gamma_{8}\right)^{2}-\left(\alpha_{1}+2\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)+\alpha_{5}\right)\left(\beta_{1}+2\left(\beta_{2}+\beta_{3}+\beta_{4}\right)+\beta_{5}\right)\right)
\end{aligned}
$$

Thus,

$$
r=(2,2,2,2,2), \quad k=(4,1,1,1,1), \quad d=(4,1,1,1,1) .
$$

This in turn implies
$\mathcal{Z}_{\Gamma} \simeq \operatorname{Herm}(2 ; \mathbb{H}) \oplus \operatorname{Sym}(2 ; \mathbb{R}) \oplus \operatorname{Sym}(2 ; \mathbb{R}) \oplus \operatorname{Sym}(2 ; \mathbb{R}) \oplus \operatorname{Sym}(2 ; \mathbb{R})$.
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(5) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work

Cyclic groups

- In the case of cyclic Γ the orthogonal matrix U_{Γ} can be constructed explicitly, and we obtain the structure constants r_{i}, k_{i} and d_{i} easily.
- Let us consider $\Gamma=\langle\sigma\rangle$ with

$$
\sigma=\underbrace{\left(i_{1} \ldots\right)}_{p_{1}} \underbrace{\left(i_{2} \ldots\right)}_{p_{2}} \cdots \underbrace{\left(i_{C} \ldots\right)}_{p_{C}}
$$

Theorem

Let $\Gamma=\langle\sigma\rangle$ be a cyclic group of order N. For $\alpha=0,1, \ldots,\left\lfloor\frac{N}{2}\right\rfloor$ set

$$
\begin{aligned}
r_{\alpha}^{*} & =\#\left\{c \in\{1, \ldots, C\} ; \alpha p_{c} \text { is a multiple of } N\right\} \\
d_{\alpha}^{*} & = \begin{cases}1 & (\alpha=0 \text { or } N / 2) \\
2 & \text { (otherwise) } .\end{cases}
\end{aligned}
$$

Then, $L=\#\left\{\alpha ; r_{\alpha}^{*}>0\right\}$,

$$
r=\left(r_{\alpha}^{*} ; r_{\alpha}^{*}>0\right) \quad \text { and } \quad k=d=\left(d_{\alpha}^{*} ; r_{\alpha}^{*}>0\right) .
$$

Let $\left(e_{i}\right)_{i=1}^{p}$ denote the standard basis of \mathbb{R}^{p}.

Theorem

The orthogonal matrix U_{Γ} can constructed by arranging column vectors $v_{k}^{(c)}$ in an appropriate order, where $v_{1}^{(c)}, \ldots, v_{p_{c}}^{(c)} \in \mathbb{R}^{p}$ by

$$
\begin{aligned}
v_{1}^{(c)} & \left.:=\sqrt{\frac{1}{p_{c}}} \sum_{k=0}^{p_{c}-1} e_{\sigma^{k}\left(i_{c}\right)}\right) \\
v_{2 \beta}^{(c)} & :=\sqrt{\frac{2}{p_{c}}} \sum_{k=0}^{p_{c}-1} \cos \left(\frac{2 \pi \beta k}{p_{c}}\right) e_{\sigma^{k}\left(i_{c}\right)} \\
v_{2 \beta+1}^{(c)} & :=\sqrt{\frac{2}{p_{c}}} \sum_{k=0}^{p_{c}-1} \sin \left(\frac{2 \pi \beta k}{p_{c}}\right) e_{\sigma^{k}\left(i_{c}\right)} \\
v_{p_{c}}^{(c)} & :=\sqrt{\frac{1}{p_{c}}} \sum_{k=0}^{p_{c}-1} \cos (\pi k) e_{\sigma^{k}\left(i_{c}\right)}
\end{aligned} \quad\left(\begin{array}{l}
\text { if } \left.p_{c} \text { is even }\right) .
\end{array}\right.
$$

Example

- Let us consider $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)(6) \in \mathfrak{S}_{6}$.
- We have $p_{1}=3, p_{2}=2, p_{3}=1$ and $N=\operatorname{LCM}\left(p_{1}, p_{2}, p_{3}\right)=6$.
- We count $r_{0}^{*}=3, r_{1}^{*}=0, r_{2}^{*}=1, r_{3}^{*}=1$, so that,

$$
r=(3,1,1) \quad \text { and } \quad d=k=(1,2,1) .
$$

- Thus, $\mathcal{Z}_{\Gamma} \simeq \operatorname{Sym}(3 ; \mathbb{R}) \oplus \operatorname{Herm}(1 ; \mathbb{C}) \oplus \operatorname{Sym}(1 ; \mathbb{R})$.
- Moreover,

$$
U_{\Gamma}=\left(\begin{array}{cccccc}
1 / \sqrt{3} & 0 & 0 & \sqrt{2 / 3} & 0 & 0 \\
1 / \sqrt{3} & 0 & 0 & -\sqrt{1 / 6} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{3} & 0 & 0 & -\sqrt{1 / 6} & -1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2} & 0 & 0 & 0 & 1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & 0 & 0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

Agenda

(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups

- RCOP-Wishart laws
(-) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
- Future work

RCOP-Wishart laws

- Let $\pi_{\Gamma}: \operatorname{Sym}(p ; \mathbb{R}) \rightarrow \mathcal{Z}_{\Gamma}$ be the projection

$$
\pi_{\Gamma}(x)=\frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma} R(\sigma) \cdot x \cdot R(\sigma)^{\top}
$$

- Let $\Sigma \in \mathcal{P}_{\Gamma} \subset \operatorname{Sym}^{+}(p ; \mathbb{R})$ and let Z_{1}, \ldots, Z_{n} be iid from $\mathrm{N}_{p}(0, \Sigma)$. Define

$$
W_{n}=\pi_{\ulcorner }\left(\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}\right)
$$

Theorem

The law of W_{n} is absolutely continuous if and only if

$$
n \geqslant n_{0}:=\max _{i=1, \ldots, L}\left\{\frac{r_{i} d_{i}}{k_{i}}\right\}
$$

If $n \geqslant n_{0}$, then its density function is given by

$$
\frac{\operatorname{Det}(X)^{n / 2} e^{-\frac{1}{2} \operatorname{Tr}\left[X \cdot \Sigma^{-1}\right]}}{\operatorname{Det}(2 \Sigma)^{n / 2} \Gamma_{\mathcal{P}_{\mathrm{r}}}\left(\frac{n}{2}\right)} \varphi_{\Gamma}(X) \mathbf{1}_{\mathcal{P}_{\mathrm{r}}}(X) .
$$

(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups

- RCOP-Wishart laws
© Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work
- Bayesian model search on all colored spaces seems at the moment intractable. There are two big obstacles:
(1) Lattice structure of $\left\{\mathcal{Z}_{\Gamma} ; \Gamma \subset \mathfrak{S}_{p}\right\}$ (or equivalently, of $\left\{\Gamma^{*}\right\}$) is very complicated and it seems very hard to propose a consistent approach for travelling through the space of colors.
(2) It is in general impossible to find structure constants for arbitrary group 「. How about 「*?
- We are making a small step forward and we propose a model selection procedure restricted to cyclic colorings, that is, when $\Gamma=\langle\sigma\rangle$ for $\sigma \in \mathfrak{S}_{p}$. This smaller space has much better combinatorial description.
- We take prior on 「 to be uniform on all (cyclic) subgroups of \mathfrak{S}_{p}.
- Let $K=\Sigma^{-1}$. We will assume that $K \mid \Gamma$ is the Diaconis-Ylvisaker conjugate prior for K, that is,

$$
f_{K \mid \Gamma}(k)=\frac{1}{I_{\Gamma}(\delta, D)} \operatorname{Det}(k)^{(\delta-2) / 2} e^{-\frac{1}{2} \operatorname{Tr}[D \cdot k]} \mathbf{1}_{\mathcal{P}_{\Gamma}}(k)
$$

- We assume that Z_{1}, \ldots, Z_{n} given $\{K, \Gamma\}$ are i.i.d. $\mathrm{N}_{p}\left(0, K^{-1}\right)$ random vectors with $K \in \mathcal{P}_{\Gamma}$.
- Then, it is easily seen that

$$
\mathbb{P}\left(\Gamma \mid Z_{1}, \ldots, Z_{n}\right) \propto \frac{I_{\Gamma}\left(\delta+n, D+\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}\right)}{I_{\Gamma}(\delta, D)}
$$

- For small p we calculate all possibilities.
- For big p we run Metropolis-Hastings algorithm.
- In a Bayesian framework, the classical approach for choosing between two models is to compute their posterior probability density and choose the model with the highest posterior probability.
- We look for

$$
\hat{\Gamma}=\arg \max _{\Gamma} \frac{I_{\Gamma}\left(\delta+n, D+\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}\right)}{I_{\Gamma}(\delta, D)} .
$$

(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws

- Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work

Structure constants for $p=4$

- There are 22 different RCOP colorings.
- Up to conjugacy (renumbering of vertices), there are 8 different conjugacy classes.

Group	$\left(k_{i}\right)$	$\left(r_{i}\right)$	$\left(d_{i}\right)$
$\Gamma_{1}^{*}=\{\mathrm{id}\}$	(1)	(4)	(1)
$\Gamma_{2}^{*}=\langle(12)\rangle$,	$\Gamma_{3}^{*}=\langle(13)\rangle$	$(1,1)$	$(3,1)$
$\Gamma_{4}^{*}=\langle(14)\rangle$,	$\Gamma_{5}^{*}=\langle(23)\rangle$		$(1,1)$
$\Gamma_{6}^{*}=\langle(24)\rangle$,	$\Gamma_{7}^{*}=\langle(34)\rangle$		
$\Gamma_{8}^{*}=\langle(123),(12)\rangle, \quad \Gamma_{9}^{*}=\langle(124),(12)\rangle$	$(1,2)$	$(2,1)$	$(1,1)$
$\Gamma_{10}^{*}=\langle(134),(13)\rangle, \quad \Gamma_{11}^{*}=\langle(234),(23)\rangle$			
$\Gamma_{12}^{*}=\langle(12)(34)\rangle, \quad \Gamma_{13}^{*}=\langle(13)(24)\rangle$	$(1,1)$	$(2,2)$	$(1,1)$
$\Gamma_{14}^{*}=\langle(14)(23)\rangle$			
$\Gamma_{15}^{*}=\langle(1234),(13)\rangle, \Gamma_{16}^{*}=\langle(1243),(14)\rangle$	$(1,1,2)$	$(1,1,1)$	$(1,1,1)$
$\Gamma_{17}^{*}=\langle(1324),(12)\rangle$			
$\Gamma_{18}^{*}=\langle(12),(34)\rangle, \quad \Gamma_{19}^{*}=\langle(13),(24)\rangle$	$(1,1,1)$	$(2,1,1)$	$(1,1,1)$
$\Gamma_{20}^{*}=\langle(14),(23)\rangle$			
$\Gamma_{21}^{*}=\langle(12)(34),(14)(23)\rangle$	$(1,1,1,1)$	$(1,1,1,1)$	$(1,1,1,1)$
$\Gamma_{22}^{*}=\mathfrak{S}_{4}$	$(1,3)$	$(1,1)$	$(1,1)$

Figure borrowed from Gehrmann (2011).

- The head dimensions (length L_{i} and breadth $B_{i}, i=1,2$) of 25 pairs of first and second sons were measured.
- $n=25, p=4, V=\left(L_{1}, B_{1}, L_{2}, B_{2}\right)$. We take $\delta=3$.

$$
\sum_{i=1}^{n} Z_{i} \cdot Z_{i}^{\top}=\left(\begin{array}{rrrr}
2287.04 & 1268.84 & 1671.88 & 1106.68 \\
1268.84 & 1304.64 & 1231.48 & 841.28 \\
1671.88 & 1231.48 & 2419.36 & 1356.96 \\
1106.68 & 841.28 & 1356.96 & 1080.56
\end{array}\right)
$$

- Posterior probabilities:

D	Best model		2nd best			3rd best	
I_{4}	Γ_{22}^{*}	(95.2%)	Γ_{16}^{*}	(2.5%)	Γ_{11}^{*}	(1.3%)	
$50 I_{4}$	Γ_{19}^{*}	(33.8%)	Γ_{13}^{*}	(29.6%)	Γ_{8}^{*}	(13.3%)	
$100 I_{4}$	Γ_{13}^{*}	(39.6%)	Γ_{19}^{*}	(29.8%)	Γ_{8}^{*}	(7.2%)	
$1000 I_{4}$	Γ_{1}^{*}	(38.9%)	Γ_{13}^{*}	(10.5%)	Γ_{3}^{*}	(10.3%)	

Figure borrowed from Gehrmann (2011).

D	Best model			2nd best		
3rd best						
I_{4}	Γ_{22}^{*}	(95.2%)	Γ_{16}^{*}	(2.5%)	Γ_{11}^{*}	(1.3%)
$50 I_{4}$	Γ_{19}^{*}	(33.8%)	Γ_{13}^{*}	(29.6%)	Γ_{8}^{*}	(13.3%)
$100 I_{4}$	Γ_{13}^{*}	(39.6%)	Γ_{19}^{*}	(29.8%)	Γ_{8}^{*}	(7.2%)
$1000 I_{4}$	Γ_{1}^{*}	(38.9%)	Γ_{13}^{*}	(10.5%)	Γ_{3}^{*}	(10.3%)

- For different values of $D=d l_{4}$, the only models with highest posterior probability are:
- $\Gamma_{22}^{*}=\mathfrak{S}_{4}$,
- $\Gamma_{19}^{*}=\langle(13),(24)\rangle$,
- $\Gamma_{13}^{*}=\langle(13)(24)\rangle$,
- $\Gamma_{1}^{*}=\{\mathrm{id}\}$.
- Recall the enumeration of vertices $(1,2,3,4)=\left(L_{1}, B_{1}, L_{2}, B_{2}\right)$. The invariance with respect to the transposition (13) means that L_{1} is exchangeable with L_{2} and, similarly, the invariance with respect to the transposition (24) implies exchangability of B_{1} and B_{2}. Both together correspond to the fact that sons should be exchangable in some way.
(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work
- First, we introduce a Markov chain on the space of all permutations:

$$
\sigma_{t}=\sigma_{t-1} \circ x_{t}, \quad\left(x_{t}\right)_{t} \text { are i.i.d. transpositions. }
$$

- $\left(\sigma_{t}\right)_{t}$ induces a Markov chain on the space of cyclic groups, $\left(\left\langle\sigma_{t}\right\rangle\right)_{t}$, but we loose uniformity: it may happen that

$$
\left\langle\sigma_{t-1} \circ x_{t}\right\rangle=\left\langle\sigma_{t-1} \circ x_{t}^{\prime}\right\rangle \text { for } x_{t} \neq x_{t}^{\prime} \text {. }
$$

- We choose the proposal distribution g to be proportional to the number of possible transitions from $\langle\sigma\rangle$ to $\left\langle\sigma^{\prime}\right\rangle$, that is,

$$
g\left(\left\langle\sigma^{\prime}\right\rangle \mid\langle\sigma\rangle\right):=\frac{\#\left\{(i, j) \in \mathfrak{S}_{p} ; \sigma^{\prime}=\sigma \circ(i, j)\right\}}{\binom{p}{2}} .
$$

Starting from a cyclic group $\Gamma_{0}=\left\langle\sigma_{0}\right\rangle$, repeat the following two steps for $t=1,2, \ldots$:
(1) Sample x_{t} uniformly from the set of all transpositions and set

$$
\sigma_{t}=\sigma_{t-1} \circ x_{t}
$$

(2) Accept the move $\Gamma_{t}=\left\langle\sigma_{t}\right\rangle$ with probability

$$
\min \left\{1, \frac{I_{\left\langle\sigma_{t}\right\rangle}(\delta+n, D+U) \cdot I_{\left\langle\sigma_{t-1}\right\rangle}(\delta, D)}{l_{\left\langle\sigma_{t}\right\rangle}(\delta, D) \cdot I_{\left\langle\sigma_{t-1}\right\rangle}(\delta+n, D+U)} \cdot \frac{g\left(\left\langle\sigma_{t-1}\right\rangle \mid\left\langle\sigma_{t}\right\rangle\right)}{g\left(\left\langle\sigma_{t}\right\rangle \mid\left\langle\sigma_{t-1}\right\rangle\right)}\right\}
$$

If the move is rejected, set $\Gamma_{t}=\Gamma_{t-1}$ and $\sigma_{t}=\sigma_{t-1}$.

p	\#subgroups of \mathfrak{S}_{p}	$\# \mathcal{Z}_{\Gamma}$	\#cyclic groups
1	1	1	1
2	2	2	2
3	6	5	5
4	30	22	17
5	156	93	67
6	1455	739	362
7	11300	4508	2039
8	151221	$?$	14170
9	1694723	$?$	109694
10	29594446	$?$	976412
$\mathbf{1 8}$	$7 \cdot 10^{18}$	$?$	$7 \cdot 10^{14}$

- We choose $p=10,20$
- $n=p, \delta=3, D=I_{p}$.
- Let Σ_{0} be a symmetric circular matrix of the form

- We sample Z_{1}, \ldots, Z_{n} from $\mathrm{N}_{p}\left(0, \Sigma_{0}\right)$, where Σ_{0} is a symmetric circular matrix
- Σ_{0} is invariant under $\Gamma_{0}=\langle(1,2, \ldots, p)\rangle$.
- We start Metropolis-Hastings algorithm with $\Gamma_{0}=\{\mathrm{id}\}$ and iterate 500000 times.
- There are $\approx 9 \cdot 10^{7}$ cyclic subgroups of \mathfrak{S}_{p}.
- $\underline{Z} \cdot \underline{Z}^{\top} / n$ equals

- Acceptance rate $=1.0 \%$

$$
\begin{array}{|l|r|}
\hline\langle\sigma\rangle & \hat{P}(\Gamma=\langle\sigma\rangle \mid \underline{Z}) \\
\hline\langle(0,2,4,6,8)(1,3,5,7,9)\rangle & 48.1 \% \\
\langle(0,1,2,3,4,5,6,7,8,9)\rangle & 21.2 \% \\
\langle(0,2,7,9,1,5,8,3,4,6)\rangle & 6.1 \% \\
\langle(0,2,4,6,7)(1,3,5,8,9)\rangle & 4.3 \% \\
\langle(0,6,4,5,1,9)(2,7)(3,8)\rangle & 1.3 \% \\
\hline
\end{array}
$$

- First model is

- There are $\approx 2 \cdot 10^{17}$ cyclic subgroups of \mathfrak{S}_{p}.
- $\underline{Z} \cdot \underline{Z}^{\top} / n$ equals

- Acceptance rate $=0.29 \%$

$\langle\sigma\rangle$	$\hat{P}(\Gamma=\langle\sigma\rangle \mid \underline{Z})$
$\langle(0-4,9-14,19)(5,8)(6,7)(15,18)(16,17)\rangle$	34.6%
$\langle(0-5,8-15,18,19)(6,7)(16,17)\rangle$	26.1%
$\langle(0-15,17,18,16,19)\rangle$	16.6%
$\langle(0-5,8-15,18,19)(16,17)\rangle$	4.4%
$\langle(0-5,8-15,18,19)(6,7)\rangle$	1.9%

- First model is

(1) Colored graphical models
(2) Main technical results
(1) Block decomposition of colored spaces
(2) Short intro to representation theory
(3) Gamma integrals
(9) Structure constants
(3) Specification to cyclic groups
(3) RCOP-Wishart laws
(1) Bayesian model selection
(1) Small p example - Frets' heads
(2) Arbitrary p-within cyclic groups (simulations)
© Future work
- We are able to compute gamma integrals for all RCOP models within decomposable graphs.
- We produce examples outside RCOP, for which we are still able to compute gamma integrals.
- Traveling through the space of models within colored decomposable graphs.

Thank you for your attention

Andersson, S. A. (1975) Invariant normal models. Ann. Statist., 3, 132-154.
Andersson, S. A. and Madsen, J. (1998) Symmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist., 26, 525-572.
Gehrmann, H. (2011) Lattices of graphical Gaussian models with symmetries. Symmetry, 3, 653-679.,
Højsgaard, S. and Lauritzen, S. L. (2008) Graphical Gaussian models with edge and vertex symmetries. J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 1005-1027.
Siemons, J. (1982) On partitions and permutation groups on unordered sets. Arch. Math. (Basel), 38, 391-403.
Siemons, J. (1983) Automorphism groups of graphs. Arch. Math. (Basel), 41, 379-384.
Wielandt, H. (1969) Permutation groups through invariant relations and invariant functions. Lect. Notes Dept. Math. Ohio St. Univ. Columbus.

Graczyk, P., Ishi. H, Kołodziejek, B., Massam, H. (2019) Model selection in the space of Gaussian models invariant by symmetry.
In preparation.

