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Examples for catastrophic risk

Ver Hoef, J.M., Peterson, E. and Theobald, D. (2006) Spatial statistical models that use flow and stream distance.
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Examples for catastrophic risk

Asadi, P., Davison, A.C. and Engelke, S. (2015) Extremes on river networks.
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Examples for catastrophic risk

Runway overrun DAG
wind speed ~vW airspeed ~vA

landing weight m

ground speed ~vGS
~vK = ~vA + ~vW

vGS = vTAS + vW

height h

energy
= 1

2 mv2
GS + mgh

∝ h
∝ v2

GS

∝ m

∝ m

∝ m

headwind ~vH

touchdown point
≈ s = vt

energy
= 1

2 mv2
GS

or specific energy

ground speed ~vGS

∝ v2
GS

≈ s = vt
∝ ~vH?

distance
D = 1

2 gcDv2
A

vK = vA + vW

brake pressure

?

energy

deceleration
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Causal risk modelling

Graphical models for causal risk modelling

Goal: Establish cause-effect relations from observational data

Causation fallacy: Correlation does not imply causation

Structural equation models: Represent the underlying causal
mechanism in terms of a directed acyclic graph (DAG).

Advantage:
The edge orientations give an intuitive causal interpretation.

In the literature:
Mainly discrete models and Gaussian models, and correlation as
dependence measures.

Correlation fallacy: Correlation does not imply high risk dependence
Frequency without severity fallacy: High risk is in the severities

Distribution fallacy: Normal distributions underestimate high risks
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Recursive max-linear structural equations

Recursive max-linear graphical models [Gissibl & K. (2018)]

For Z1, . . . ,Zd > 0 independent, continuous, unbounded support,
and edge weights cik > 0, we define the
recursive max-linear model1

Xi :=
∨

k∈pa(i)

cik Xk ∨ Zi i = 1, . . . , d

X1

X2

c2
1

X3

c3
1

X4

c4
2 c4

3

In matrix form: X = C � X ∨ Z ,
with solutiona (B is the Kleene star matrix)

X = B � Z

and B =
d−1∨
k=0

C�k = (Id ∨ C)�(d−1)

aAlgebra: Butkovic (2010)
1SEM: Pearl (2009), Graphical Model: Lauritzen (1996)
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Recursive max-linear structural equations

Path analysis: what is the Kleene star matrix B in the DAG?

For a path p = [j = k0 → k1 → · · · → kn = i] define the path-weights

dji(p) :=
n−1∏
i=0

cki+1
ki

bji :=
∨
p∈Pji

dji(p) ∀j ∈ an(i), bii = 1 and all other bji = 0.

Then2 Xi =
∨

j∈An(i) bjiZj i = 1, . . . , d,
Path(s) of D, which realize bji are called max-weighted path.
We can remove an edge from D, which is not part of a
max-weighted path without changing the distribution of X .
The DAG obtained in this way is called the
minimum max-linear DAG, denoted by DB .

2Max-linar model: Wang and Stoev (2011), no graphs
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Identifiability

Model identifiability: X = C � X ∨ Z has solution X = B � Z

Only B and the corresponding DAG DB are identifiable.
Use Yji := Xi/Xj to identify B from the distribution of X :
The innovations Zi have no atoms, but for j ∈ An(i),

Xi =
∨

k∈An(i)

bkiZk ≥
∨

k∈An(j)

bkiZk ≥
∨

k∈An(j)

bkjbjiZk = bji

∨
k∈An(j)

bkiZk = bjiXj

supp(Yji) =


[bji,∞) j ∈ an(i)
(0, 1/bij] j ∈ de(i)
(0,∞) otherwise
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Identifiability

Distributional properties of Yji = Xi/Xj

Relationship between i and j (Yji) Atoms
j ∈ an(i) [bji,∞) {b`i/b`j, ` ∈ An(j)}
i ∈ an(j) (0, 1/bij] {b`i/b`j, ` ∈ An(i)}
otherwise:

if an(i) ∩ an(j) , ∅ R+ {b`i/b`j, ` ∈ an(i) ∩ an(j)}
if an(i) ∩ an(j) = ∅ R+ ∅
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Estimation of B

Estimation of B for known DAG: X (1), . . . ,X (n) ∈ Rd
+

This suggests the minimum ratio estimator3

b̆ji =
n∧

t=1

y (t)
ji =

n∧
t=1

x (t)
i

x (t)
j

for j ∈ an(i), b̆ii = 1, b̆ji = 0 for j ∈ V \ An(i).

Problem: B̆ not necessarily admissible for D.

Example:

1 2 3D

Assume we observe b̆13 > b̆12b̆23, then B̆ is not admissible for D
as 1→ 3 is estimated to be max-weighted.

3Davis and Resnick (1989) suggest this estimator for max-ARMA time series.
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Estimation of B

Estimation of B for known DAG

Lemma. Let B be a matrix with non-neg. entries and diagonal 1.
Define B0 = (bji1pa(i)(j))d×d . Then B is admissible for D if and only if

bji > 0 ⇐⇒ j ∈ an(i) and B = Id ∨ (B � B0).

The rhs has unique solution B = (Id ∨ B0)�(d−1). �

Consequently, we estimate B0 by B̆0, the minimum ratio estimator

b̆ji = b̂ji =
n∧

t=1

y (t)
ji =

n∧
t=1

x (t)
i

x (t)
j

for j ∈ pa(i), b̆ii = 1, b̆ji = 0 for j ∈ V\An(i)

and define
B̂ = (Id ∨ B̆0)�(d−1).
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Estimation of B

Properties of B̂

bji ≤ b̂ji ≤ b̆ji

One observation may be enough to estimate B exactly.
Example. In the diamond,
let 1→ 2→ 4 and 1→ 3→ 4 be both max-weighted.
If we observe the event{

X2 = b12X1

}
∩

{
X3 = b13X1

}
∩

{
X4 = b24X2

}
∩

{
X4 = b34X3

}
(Z1 realises all node variables X1, . . . ,X4), then B̂ = B. �

P(b̂ji = bji)→ 1 geometrically fast as n → ∞.
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Estimation of B

• B̂ is a generalized MLE

Let PB be the distribution of the recursive ML vector X .
Then P = {PB ,B admissible for D} is not dominated.

Define a generalized MLE4: Note that

ρ(x,P,P∗) =
dP

d(P + P∗)
(x)

is a density, which always exists as P(A ) + P∗(A ) = 0 ⇒ P(A ) = 0.
Definition. P̂ is GMLE of P, if

ρ(x, P̂,P) ≥ ρ(x,P, P̂) ∀P ∈ P.

P̂ explains x at least as well as any other distribution of P.
Theorem. [GKL (2018)] B̂ is a GMLE. �

4Kiefer and Wolfowitz (1956)
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Estimation of B

Idea of proof

Let B ,B∗ be admissible for D. Then we choose as density the
measurable function Rd

+ → {0, 1/2, 1} defined as

x 7→ ρ(x,B ,B∗) :=
1
2

1A1/2(B ,B∗)(x) + 1A1(B ,B∗)(x)

=


0 if x ∈ A0(B ,B∗)
1
2 if x ∈ A1/2(B ,B∗)
1 if x ∈ A1(B ,B∗)

This is a valid density for A0(B ,B∗), A1/2(B ,B∗), A1(B ,B∗)
chosen by the fact that Xi ≥

∨
k∈pa(i) bkiXk for i ∈ V .

We obtain for every Borel set A ⊆ Rd
+,∫

A
ρ(x,B ,B∗)(PB + PB∗)(dx)

= PB(A ∩ A1/2(B ,B∗)) + PB(A ∩ A1(B ,B∗)) = PB(A ).
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Estimation of B

How to find a density and the GMLE

Let D = ({1, 2}, 1→ 2) and b12, b∗12 be admissible for D.
supp(X2/X1) = [b12,∞) and b12 is the only atom of X2/X1.

x2
= b12x1x 2

=
b
∗

12
x 1

x2

x1

x2
x1

b∗12b12

x 2
=

b 12
x 1

=
b
∗

12
x 1

x2

x1

x2
x1

b12 = b∗12

x 2
=

b 12
x 1

x2
= b∗12

x1

x2

x1

x2
x1

b12b∗12

ρ(·,B ,B∗) as contour plot (top line) and as function of y12 = x2/x1

(bottom line) for the three possible situations.
The area where it is 0/1

2/1 is coloured in red/blue/green.
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Estimation of B and learning the DAG

Structure learning for unknown DAG

If the order of nodes/variables is known:
Estimate as before

b̆ji =
n∧

t=1

y (t)
ji =

n∧
t=1

x (t)
i

x (t)
j

for j ≤ i, b̆ii = 1, b̆ji = 0 for j > i.

Then B̆ = B̆ � B̆, i.e. B̆ is idempotent, hence5 is admissible for
some DAG D.

Moreover, P(b̆ji = bji)→ 1 geometrically fast as n → ∞.

5Butkovic, Cor. 1.6.16
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Estimation of B and learning the DAG

Structure learning for unknown DAG

If the order of nodes/variables is not known:
It suffices for every i , j to decide, whether

supp(Yji) = supp
(Xj

Xi

)
has a positive lower bound which is bji (or upper bound 1/bji),
and to estimate this bound.
As this bound is an atom, we suggest the following naive algorithm:
Algorithm. [Find an estimate B̆ of B from x (1), . . . , x (n)]

1. For all i ∈ V = {1, . . . , d}: set b̆ii = 1.
2. For all i, j ∈ V , i , j:

if #
{
t :

∧n
s=1 y (s)

ji = y (t)
ji

}
≥ 2, then conclude j ∈ an(i),

set b̆ji =
∧n

t=1 y (t)
ji else set b̆ij = 0.

�
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Simulation study

Simulation study6

Input: Minimum ratio estimator b̂ji for all i, j ∈ V .
Output: Topological order

Greedy algorithms
Branch & Bound and clever extensions
Dynamic programming

based e.g. on the ordering of the b̂ji (and computing time is given)

Simulation study
Random topological order and an Erdös Rényi graph (edge with
prob. p, with edge weights U([0, 1]), Z ∼standard Fr(1).

6Esposito, G. (2018) Master Thesis.
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Recursive max-linear models with (propagating) noise

Extend model to allow for observational noise

See Poster of Johannes Buck

Also a data analysis
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