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what does statistics tell us about causality?



Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either
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2) 3)

® cvery statistical dependence is due to a causal relation, we
also call 2) “causal”.

® distinction between 3 cases is a key problem in scientific
reasoning.

® case 2 entails conditional independence X L Y |Z

® cases 1-3 can also occur simultaneously



Functional model of causality e

every node X; is a function of its parents PA; and an
unobserved noise term E;

f; describes how X; changes when parents are set to specific

values
O\‘ ’ . PA; (Parents of Xj)
NS

X; = fi(PA;, E))

0

all noise terms E; are statistically independent (causal
sufficiency)

which properties of P(Xi, ..., X,) follow?



Causal Markov condition (4 equivalent Versions) taurien et sl ear
® existence of a functional model

® |ocal Markov condition: every node is conditionally
independent of its non-descendants, given its parents

non—descend&

parents of X,

\ O descendants

(information exchange with non-descendants involves parents)
e global Markov condition: describes all ind. via d-separation
® Factorization: P(Xy,...,X,) = [[; P(Xj|PA))

(every P(Xj|PA;) describes a causal mechanism)



Causal relations between single objects

Rum Trauben Nuss

® we don’t infer causality only from statistical dependences.

® similarities of single objects also require a causal explanation






Measure complexity via Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solomonoff 1964)
of a binary string x

K(x) = length of the shortest program with output x (on a
Turing machine)

interpretation: number of bits required to describe the rule
that generates x

neglect string-independent additive constants; use £ instead
of =

strings x, y with low K(x), K(y) cannot have much in
common

K (x) is uncomputable

probability-free definition of information content



Conditional Kolmogorov complexity

K(y|x): length of the shortest program that generates y from
the input x.

number of bits required for describing y if x is given

K(y|x*) length of the shortest program that generates y from

x*, i.e., the shortest compression x.

subtle difference: x can be generated from x* but not vice
versa because there is no algorithmic way to find the shortest
compression



Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

K(x) + K(y) — K(x,y)

® /(x:y):=
L K(x) — K(x[y*) = K(y) — K(y|x*)

® |Interpretation: number of bits saved when compressing x, y
jointly rather than compressing them independently
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® replace strings x, y (=objects) with random variables X, Y
e replace Kolmogorov complexity with Shannon entropy

e replace algorithmic mutual information /(x : y) with statistical
mutual information /(X; Y)
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Causal Principle

If two strings x and y are algorithmically dependent then either

® every algorithmic dependence is due to a causal relation

® algorithmic analog to Reichenbach's principle of common
cause

® distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Scholkopf IEEE TIT 2010
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Conditional algorithmic mutual information

I(x:ylz) = K(x|z) + K(y|z) = K(x, y|2)
Information that x and y have in common when z is already
given

Formal analogy to statistical mutual information:
I(X:Y|Z)=H(X|Z)+ H(Y|Z) — H(X,Y|Z)
Define conditional independence:

I(x:ylz)0:&x 1Ly|z
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Algorithmic Markov condition

Postulate [DJ & Schélkopf IEEE TIT 2010]

Let xi, ..., x, be some observations (formalized as strings) and G
describe their causal relations.

Then, every x; is conditionally algorithmically independent of its
non-descendants, given its parents, i.e.,

X L nd; |paj
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Equivalence of algorithmic Markov conditions

Theorem

For n strings xi, ..., x, the following conditions are equivalent

® | ocal Markov condition:
*\ T
I(x; - ndjlpa;) £ 0

® Global Markov condition:
R d-separates S and T implies I(S : T|R*) £0

® Recursion formula for joint complexity

K(X1, oo Xn) = Z K(xjlpa;})
j=1

— another analogy to statistical causal inference
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Algorithmic model of causality

Given n causality related strings xi,..., X,

® each x; is computed from its parents pa; and an unobserved
string u; by a Turing machine T

pag\\ J

&)= T (paj,u;)

® all u; are algorithmically independent

® each uj describes the causal mechanism (the program)
generating x; from its parents

® u; is the analog of the noise term in the statistical functional
model
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If x1,...,xn are generated by an algorithmic model of causality
according to the DAG G then they satisfy the 3 equivalent
algorithmic Markov conditions.




3 carpets

A / \ B
% 1

|

conditional independence A L B|C



We need computable information measures instead of K

Ideas:
® compression length w.r.t. existing algorithm
® number of objects of a set

Questions:
® do they define notion of conditional (in)dependence?

® if yes, should we postulate also a causal Markov condition?
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Axiomatic approach: define “information measure”

Given a set S := {x1,...,x,} of objects, a function R : 2° — RS
is called information measure if

¢ normalization: R((})) =0
® monotonicity: R(s) < R(t) for s C t

¢ submodularity: R(s) + R(t) > R(sUt)+ R(sNt)

Steudel, DJ, Schélkopf, COLT 2010
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Examples of such information measures

® discrete random variables Xy, ..., X\

R({X1,...,Xk}) := H(X1,...,Xk) (Shannon entropy)

® strings Xi, ..., Xk
R({x1,...,xk}) := K(x1,...,x) (Kolmogorov complexity)
submodular up to logarithmic terms

® sets S1,...,5k

R({S1,---,5k}): U S; (number of elements)
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More examples...

® natural numbers nq,..., ng
R({ni,...,nk}) :=loglem(ny,...,ng) (least common multiple)
® strings Xq,. .., Xk

R({x1,...,xk}) = LZ(x1,...,xx) (Lempel-Ziv complexity)

empirical evidence and partial theoretical results suggest that
it is approximately submodular
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Defining conditional (mutual) information

e conditional information:
R(s|t) == R(sUt) — R(t)

(non-negative due to monotonicity)

e conditional mutual information:
I(s:tlu):==R(sUu)+R(tUu) — R(sUtUu)— R(u)

(non-negative due to submodularity)
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Equivalence of 3 Markov conditions for submodular R

Let {x1,...,xn} a set of objects, each corresponding to a node of
a DAG G. Then the following three conditions are equivalent:

(1) local Markov condition: given its parents, every object is
conditionally independent of its non-descendants

(2) global Markov condition: d-separation of nodes implies
conditional independence

(3) the joint information decomposes according to the DAG
structure

k
R(x1, ..., Xk ZR xj| paj)
j=1

for every causally sufficient subset {xi,...,xx} of nodes
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= mathematically, the Markov condition is well-defined,

but is it also a reasonable postulate for general R?
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Recall justifications of statistical causal Markov conditions

via a functional model:

postulate the existence of unobserved noise variables Ny, ..., N,
such that

® noise variables are statistically independent, i.e.,

H(Ny, ..., Na) = > H(N)).

® every variable is a deterministic function of its parents and the
noise

H(X;, PA;, N;) = H(PA;, N;).
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generalization to arbitrary information measures

Definition: the objects xi,...,x, have an R-functional model of
causality if there are “noise objects” ny, ..., n, such that

® the noise objects are R-independent

R(ni,...,nn) :ZR(nj).

® the causal mechanism is R-deterministic
R(xj, paj, nj) = R(paj, n})

(the effect only contains information that is already contained
in its observed or unobserved causes)

28



Theorem

the existence of an R-functional model implies the causal
Markov condition with respect to R-independence.

this does not really solve the problem:
® to decide whether or not an R-functional model is reasonable
depends on the domain

® in particular, to decide whether R(x,y) < R(x) + R(y)
necessarily indicates a causal relation requires domain
knowledge
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author's own
abulary

ANV

® unobserved noise objects: personal vocabulary of every author,
assumed to be disjoint

® every author mixes the vocabulary of the templates with
his/her own vocabulary
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Text 1

unobserved object

Lempel-Ziv-functional model for texts
kddgowefwqegfepiasdgsfdaj

qwertyuiopasdfghjklzxcvbnnm
Text 2 yuiopasdfgowefcvbnnm

® unobserved noise objects Ny, ..., N, (LZ-independent)

® every text T; is a concatenation of k substrings taken from its
parents PA; and N;

then the LZ Markov condition holds up to an error term of size k
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Non-statistical information on top of statistics

Postulate: Algorithmic Independence of Conditionals

If n random variables Xi, ..., X, are related by a causal DAG G,
the conditionals P(Xj|PA;) in the causal factorization

P(X1,.... Xs) = [ [ P(Xi|PA})
j=1

are algorithmically independent.

Markov equivalent DAGs may get distinguishable

DJ & Schélkopf, IEEE TIT 2010. Lemeire & DJ, 2012.
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Let X be binary and Y real-valued.

® let Y be Gaussian and X =1 for all y above some threshold
and X = 0 otherwise.

Ply.x=0)

plyx=1)

/

® Y — X is plausible: simple thresholding mechanism

® X — Y requires a strange mechanism:
look at PY|X=O and PY|X=1 !
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not only Py x itself is strange...

but also what happens if we change Px:

Hence, reject X — Y because it requires tuning of Px relative to

PY|X'
Knowing Py |x, there is a short description of Px, namely 'the
unique distribution for which 3 Py, p(x) is Gaussian'.
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Detect whether a multivariate model is causally sufficient

Problem: target Y correlated with potential cause

X = (Xi,...,Xq), but correlation may be due the common cause Z
(e.g.: observed genes may correlate with a phenotype although it is
only influenced by unobserved genes)

Goal: infer from Py y alone (!) whether hidden common cause Z
exists and whether correlations between X and Y are dominated by

the confounder
25



Postulate: “Independence of Mechanisms”

For the causal structure

0—0

Px contains no information about Py x

Possible formalizations:

¢ algorithmic independence: knowing Px does not enable a
shorter description of Py|x and vice versa (DJ & Schélkopf 2010)

® no semi-supervised learning in causal direction: unlabelled
x-values are useless for learning Py/x (Schélkopf, DJ, ... 2012)

® here: generic orientation of the regression vector: for
Y=(a,X)+E
the vector a is not aligned with eigenvectors of ¥x x
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Detecting confounding and overfitting

purely confounded confounded causal relation

we found different models of confounding for which regression
vector is mainly contained in the low eigenvalue subspaces of
2 xx

same effect also obtained by overfitting small sample sizes

note: some models of confounding yield concentration in /arge
eigenva|ue su bspaces DJ & BS, Journal of Causal Inference 2017
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Linear model with many independent common causes

X = MZ Y = (a,X) + (c, Z)
(c,a randomly drawn from an isotropic prior)

regression vector:

5. g1 -T
a = ZX7XZX,Y = _a -+ M

causal confounding

results for high dimensions:
e M~ Tc concentrates in low eigenvalue subspace of
Yxx = MMmT
® confounding strength
g M Tep?
IM=Tc|? + [|a]]?

can be estimated from the direction of a
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Visualization of the concentration effect

x-axis: eigenvalues of ¥ x x
y-axis: sq.-length of component of a in the respective eigenspace

winequality-red ; dropped: 11 ; beta= 0.7 ; eta= 0.45
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confounded case: unconfounded case:
strong component for the strong component at
smallest eigenvalue random position
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Experiments with real data: taste of wine

causes Xi, ..., Xi1: ingredients (fixed acidity, volatile acidity,
citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates, alcohol)

effect Y': taste between 1 and 10 according to the opinion of
human subjects

clearly, X has some influence on Y (i.e. not purely
confounded)

linear model identifies X11 (alcohol) as the strongest influence
algorithm estimates zero confounding strength (5 = 0)

algorithm estimates 8 = 1 if alcohol is dropped
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Optical experiments with known confounding

TV providing the noise E

o ®\ ® cause X: pixel
\ vector on
o

webcam Laptop screen
[ ] -
micro controller L t.arget Y' .
l:l oo vatiage Z light intensity

ifgv:::"g:[:”'m”gmgx at the sensor
e confounder Z:
light intensity
e & of LEDs

l

[ lightsensor measuring

intensity Y
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0.6
.
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0.4

0.2

here: systematic underestimation (maybe specific to this particular
setup)
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data sets generated according to the above model
(random choice of a and c)
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Causal regularization (DJ, NeuriPS 2019)

¢ use Ridge and Lasso against confounders:

® suppresses part in low eigenvalue space of ¥x x
(employs dependence between Px and Py x)

® increases prediction error only slightly

® significantly improves causal model

® causal learning theory:
regression models from small function classes have better
chances to be “causal”
(“generalize” better from observational to interventional
distribution)
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Take home messages

® non-statistical dependences also provide causal information

® they either admit causal inference among individual objects

® or they add a level to the usual statistical perspective
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|
Thank you for your attention!
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