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what does statistics tell us about causality?
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning.

• case 2 entails conditional independence X ⊥⊥ Y |Z
• cases 1-3 can also occur simultaneously
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Functional model of causality Pearl et al

• every node Xj is a function of its parents PAj and an
unobserved noise term Ej

• fj describes how Xj changes when parents are set to specific
values

Xj

PAj (Parents of Xj)

= fj(PAj ,Ej)

• all noise terms Ej are statistically independent (causal
sufficiency)

• which properties of P(X1, . . . ,Xn) follow?
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Causal Markov condition (4 equivalent versions) Lauritzen et al, Pearl

• existence of a functional model

• local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

Xj

non-descendants

descendants

parents of Xj

(information exchange with non-descendants involves parents)

• global Markov condition: describes all ind. via d-separation

• Factorization: P(X1, . . . ,Xn) =
∏

j P(Xj |PAj)

(every P(Xj |PAj) describes a causal mechanism)
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Causal relations between single objects

• we don’t infer causality only from statistical dependences.

• similarities of single objects also require a causal explanation
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...but only if they are sufficiently complex
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Measure complexity via Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solomonoff 1964)

of a binary string x

• K(x) = length of the shortest program with output x (on a
Turing machine)

• interpretation: number of bits required to describe the rule
that generates x

neglect string-independent additive constants; use
+
= instead

of =

• strings x , y with low K (x), K (y) cannot have much in
common

• K (x) is uncomputable

• probability-free definition of information content
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Conditional Kolmogorov complexity

• K (y |x): length of the shortest program that generates y from
the input x .

• number of bits required for describing y if x is given

• K (y |x∗) length of the shortest program that generates y from
x∗, i.e., the shortest compression x .

• subtle difference: x can be generated from x∗ but not vice
versa because there is no algorithmic way to find the shortest
compression
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Algorithmic mutual information

Chaitin, Gacs

Information of x about y (and vice versa)

• I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗) +

= K (y)− K (y |x∗)

• Interpretation: number of bits saved when compressing x , y
jointly rather than compressing them independently
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Algorithmic mutual information: example

I(        :        ) = K(       )    
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Analogy to statistics:

• replace strings x , y (=objects) with random variables X ,Y

• replace Kolmogorov complexity with Shannon entropy

• replace algorithmic mutual information I (x : y) with statistical
mutual information I (X ;Y )
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Causal Principle

If two strings x and y are algorithmically dependent then either

x y x

z

y x y

1) 2) 3)

• every algorithmic dependence is due to a causal relation

• algorithmic analog to Reichenbach’s principle of common
cause

• distinction between 3 cases: use conditional independences on
more than 2 objects

DJ, Schölkopf IEEE TIT 2010
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Conditional algorithmic mutual information

• I (x : y |z) = K (x |z) + K (y |z)− K (x , y |z)

• Information that x and y have in common when z is already
given

• Formal analogy to statistical mutual information:

I (X : Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z )

• Define conditional independence:

I (x : y |z) ≈ 0 :⇔ x ⊥⊥ y |z
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Algorithmic Markov condition

Postulate [DJ & Schölkopf IEEE TIT 2010]

Let x1, ..., xn be some observations (formalized as strings) and G
describe their causal relations.
Then, every xj is conditionally algorithmically independent of its
non-descendants, given its parents, i.e.,

xj ⊥⊥ ndj |pa∗j
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Equivalence of algorithmic Markov conditions

Theorem

For n strings x1, ..., xn the following conditions are equivalent

• Local Markov condition:

I (xj : ndj |pa∗j )
+
= 0

• Global Markov condition:
R d-separates S and T implies I (S : T |R∗) +

= 0

• Recursion formula for joint complexity

K (x1, ..., xn)
+
=

n∑
j=1

K (xj |pa∗j )

→ another analogy to statistical causal inference
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Algorithmic model of causality

Given n causality related strings x1, . . . , xn

• each xj is computed from its parents paj and an unobserved
string uj by a Turing machine T

• all uj are algorithmically independent

• each uj describes the causal mechanism (the program)
generating xj from its parents

• uj is the analog of the noise term in the statistical functional
model
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Algorithmic model of causality implies Markov condition

Theorem

If x1, . . . , xn are generated by an algorithmic model of causality
according to the DAG G then they satisfy the 3 equivalent
algorithmic Markov conditions.
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Causal inference for single objects

3 carpets

conditional independence A ⊥⊥ B |C
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We need computable information measures instead of K

Ideas:

• compression length w.r.t. existing algorithm

• number of objects of a set

• ...

Questions:

• do they define notion of conditional (in)dependence?

• if yes, should we postulate also a causal Markov condition?
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Axiomatic approach: define “information measure”

Given a set S := {x1, . . . , xn} of objects, a function R : 2S → R+
0

is called information measure if

• normalization: R(∅) = 0

• monotonicity: R(s) ≤ R(t) for s ⊂ t

• submodularity: R(s) + R(t) ≥ R(s ∪ t) + R(s ∩ t)

Steudel, DJ, Schölkopf, COLT 2010
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Examples of such information measures

• discrete random variables X1, . . . ,Xk

R({X1, . . . ,Xk}) := H(X1, . . . ,Xk) (Shannon entropy)

• strings x1, . . . , xk

R({x1, . . . , xk}) := K (x1, . . . , xk) (Kolmogorov complexity)

submodular up to logarithmic terms

• sets S1, . . . ,Sk

R({S1, . . . ,Sk}) := #

⋃
j

Sj

 (number of elements)
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More examples...

• natural numbers n1, . . . , nk

R({n1, . . . , nk}) := log lcm(n1, . . . , nk) (least common multiple)

• strings x1, . . . , xk

R({x1, . . . , xk}) := LZ (x1, . . . , xk) (Lempel-Ziv complexity)

empirical evidence and partial theoretical results suggest that
it is approximately submodular
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Defining conditional (mutual) information

• conditional information:

R(s|t) := R(s ∪ t)− R(t)

(non-negative due to monotonicity)

• conditional mutual information:

I (s : t|u) := R(s ∪ u) + R(t ∪ u)− R(s ∪ t ∪ u)− R(u)

(non-negative due to submodularity)
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Equivalence of 3 Markov conditions for submodular R

Let {x1, . . . , xn} a set of objects, each corresponding to a node of
a DAG G . Then the following three conditions are equivalent:

(1) local Markov condition: given its parents, every object is
conditionally independent of its non-descendants

(2) global Markov condition: d-separation of nodes implies
conditional independence

(3) the joint information decomposes according to the DAG
structure

R(x1, . . . , xk) =
k∑

j=1

R(xj |paj)

for every causally sufficient subset {x1, . . . , xk} of nodes
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⇒ mathematically, the Markov condition is well-defined,

but is it also a reasonable postulate for general R?
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Recall justifications of statistical causal Markov conditions

via a functional model:

postulate the existence of unobserved noise variables N1, . . . ,Nn

such that

• noise variables are statistically independent, i.e.,

H(N1, . . . ,Nn) =
∑
j

H(Nj) .

• every variable is a deterministic function of its parents and the
noise

H(Xj ,PAj ,Nj) = H(PAj ,Nj) .
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generalization to arbitrary information measures

Definition: the objects x1, . . . , xn have an R-functional model of
causality if there are “noise objects” n1, . . . , nn such that

• the noise objects are R-independent

R(n1, . . . , nn) =
∑
j

R(nj) .

• the causal mechanism is R-deterministic

R(xj , paj , nj) = R(paj , nj)

(the effect only contains information that is already contained
in its observed or unobserved causes)
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Theorem

the existence of an R-functional model implies the causal
Markov condition with respect to R-independence.

this does not really solve the problem:

• to decide whether or not an R-functional model is reasonable
depends on the domain

• in particular, to decide whether R(x , y)� R(x) + R(y)
necessarily indicates a causal relation requires domain
knowledge
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Functional model of plagiarism

• unobserved noise objects: personal vocabulary of every author,
assumed to be disjoint

• every author mixes the vocabulary of the templates with
his/her own vocabulary
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Lempel-Ziv-functional model for texts

• unobserved noise objects N1, . . . ,Nn (LZ-independent)

• every text Tj is a concatenation of k substrings taken from its
parents PAj and Nj

then the LZ Markov condition holds up to an error term of size k
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Non-statistical information on top of statistics

Postulate: Algorithmic Independence of Conditionals

If n random variables X1, . . . ,Xn are related by a causal DAG G ,
the conditionals P(Xj |PAj) in the causal factorization

P(X1, . . . ,Xn) =
n∏

j=1

P(Xj |PAj)

are algorithmically independent.

Markov equivalent DAGs may get distinguishable

DJ & Schölkopf, IEEE TIT 2010. Lemeire & DJ, 2012.
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Toy example

Let X be binary and Y real-valued.

• Let Y be Gaussian and X = 1 for all y above some threshold
and X = 0 otherwise.

• Y → X is plausible: simple thresholding mechanism

• X → Y requires a strange mechanism:
look at PY |X=0 and PY |X=1 !

33



not only PY |X itself is strange...

but also what happens if we change PX :

Hence, reject X → Y because it requires tuning of PX relative to
PY |X .
Knowing PY |X , there is a short description of PX , namely ’the
unique distribution for which

∑
x PY |xp(x) is Gaussian’.
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Detect whether a multivariate model is causally sufficient

Problem: target Y correlated with potential cause
X = (X1, . . . ,Xd), but correlation may be due the common cause Z
(e.g.: observed genes may correlate with a phenotype although it is
only influenced by unobserved genes)

?Z

X1

X2

X3

...

Xd

Y

Goal: infer from PX,Y alone (!) whether hidden common cause Z
exists and whether correlations between X and Y are dominated by
the confounder
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Postulate: “Independence of Mechanisms”

For the causal structure

X Y

PX contains no information about PY |X

Possible formalizations:

• algorithmic independence: knowing PX does not enable a
shorter description of PY |X and vice versa (DJ & Schölkopf 2010)

• no semi-supervised learning in causal direction: unlabelled
x-values are useless for learning PY |X (Schölkopf, DJ, ... 2012)

• here: generic orientation of the regression vector: for

Y = 〈a,X〉+ E

the vector a is not aligned with eigenvectors of ΣX,X
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Detecting confounding and overfitting

X

Z

Y

purely confounded

X

Z

Y

confounded causal relation

• we found different models of confounding for which regression
vector is mainly contained in the low eigenvalue subspaces of
ΣX,X

• same effect also obtained by overfitting small sample sizes

• note: some models of confounding yield concentration in large
eigenvalue subspaces DJ & BS, Journal of Causal Inference 2017
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Linear model with many independent common causes

X

Z1 Z2

· · ·
Z`

Ya

M c

X = MZ Y = 〈a,X〉+ 〈c,Z〉
(c, a randomly drawn from an isotropic prior)

regression vector:

ã := Σ−1X,XΣX,Y = a︸︷︷︸
causal

+ M−Tc︸ ︷︷ ︸
confounding

results for high dimensions:

• M−Tc concentrates in low eigenvalue subspace of
ΣX,X = MMT

• confounding strength

β :=
‖M−Tc‖2

‖M−Tc‖2 + ‖a‖2

can be estimated from the direction of ã
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Visualization of the concentration effect

x-axis: eigenvalues of ΣX,X

y-axis: sq.-length of component of ã in the respective eigenspace

winequality−red ; dropped: 11 ; beta= 0.7  ; eta= 0.45
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Experiments with real data: taste of wine

• causes X1, . . . ,X11: ingredients (fixed acidity, volatile acidity,
citric acid, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulphates, alcohol)

• effect Y : taste between 1 and 10 according to the opinion of
human subjects

• clearly, X has some influence on Y (i.e. not purely
confounded)

• linear model identifies X11 (alcohol) as the strongest influence

• algorithm estimates zero confounding strength (β = 0)

• algorithm estimates β = 1 if alcohol is dropped
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Optical experiments with known confounding

micro controller 
generating
random voltage Z

laptop showing
low resolution image X
from webcam

light sensor measuring 
intensity Y

webcam

TV providing the noise E

LED

LED

• cause X: pixel
vector on
Laptop screen

• target Y :
light intensity
at the sensor

• confounder Z :
light intensity
of LEDs
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Results: estimated versus true confounding strength
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β̂

here: systematic underestimation (maybe specific to this particular
setup)
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Estimated versus true confounding strength in simulations

data sets generated according to the above model
(random choice of a and c)
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Causal regularization (DJ, NeuriPS 2019)

• use Ridge and Lasso against confounders:
• suppresses part in low eigenvalue space of ΣX,X

(employs dependence between PX and PY |X)
• increases prediction error only slightly
• significantly improves causal model

• causal learning theory:
regression models from small function classes have better
chances to be “causal”
(“generalize” better from observational to interventional
distribution)
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Take home messages

• non-statistical dependences also provide causal information

• they either admit causal inference among individual objects

• or they add a level to the usual statistical perspective
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Thank you for your attention!

48


