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Directed graphical models
Let G = (V ,E) be a directed acyclic graph.
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4 5

The distribution of a random vector X = (X1,X2,X3,X4,X5) ∈
∏5

i=1 Xi with density
p lies in the graphical model corresponding to G if

I Factorization

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x2)p(x4|x1, x2, x3)p(x5|x1, x4).

I Markov properties

X1 ⊥⊥ X2; X2 ⊥⊥ X5|X1,X4; X3 ⊥⊥ X5|X1,X4,

which come from the d-separation statements 1 ⊥d 2; 2 ⊥d 5|1, 4; 3 ⊥d 5|1, 4.
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Directed Gaussian graphical models

Let X ∼ N (µ,Σ). When does the distribution of X lie in the model MG of Gaussian
distributions corresponding to a DAG G = (V ,E)?

I d-separation yields: a ⊥d b|C =⇒ Xa ⊥⊥ Xb|XC ⇐⇒ |ΣaC ,bC | = 0, and

MG = {Σ � 0 : |ΣaC ,bC | = 0 for all a ⊥d b|C}.
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4 5

1 ⊥d 2; 2 ⊥d 5|1, 4; 3 ⊥d 5|1, 4
MG = {Σ � 0 : Σ12 = 0, |Σ214,514| = 0, |Σ314,514| = 0}.

I MG =MH if and only if G and H have the same skeleton and the same

unshielded colliders.
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Directed Gaussian graphical models
X ∼ N (µ,Σ) lies in the model with DAG G = (V ,E) if and only if

Xi =
∑

j∈pa(i)

λjiXj + εi , where ε ∼ N (ν,Ω), and Ω = diag(ω1, . . . , ωn).
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4 5

X1 = ε1

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ14X1 + λ24X2 + λ34X3 + ε4

X5 = λ15X1 + λ45X4 + ε5

Let

Λ =


0 0 0 λ14 λ15

0 0 λ23 λ24 0
0 0 0 λ34 0
0 0 0 0 λ45

0 0 0 0 0

 ∈ RE , Ω =


ω1 0 0 0 0
0 ω2 0 0 0
0 0 ω3 0 0
0 0 0 ω4 0
0 0 0 0 ω5

 � 0.

Then,
X = ΛTX + ε⇐⇒ X = (I − Λ)−T ε,

and,
Σ = (I − Λ)−T Ω(I − Λ)−1.
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Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG G = (V ,E) is

MG = {Σ : Σ = (I − Λ)−T Ω(I − Λ)−1, Λ ∈ RE ,Ω � 0 diagonal}.

This is a parametric description of MG .

And the implicit description of MG is given by d-separation:

MG = {Σ � 0 : |ΣaC ,bC | = 0 for all a ⊥d b|C}.

I What happens if we introduce hidden variables?

5 / 19



Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG G = (V ,E) is

MG = {Σ : Σ = (I − Λ)−T Ω(I − Λ)−1, Λ ∈ RE ,Ω � 0 diagonal}.

This is a parametric description of MG .

And the implicit description of MG is given by d-separation:

MG = {Σ � 0 : |ΣaC ,bC | = 0 for all a ⊥d b|C}.

I What happens if we introduce hidden variables?

5 / 19



Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG G = (V ,E) is

MG = {Σ : Σ = (I − Λ)−T Ω(I − Λ)−1, Λ ∈ RE ,Ω � 0 diagonal}.

This is a parametric description of MG .

And the implicit description of MG is given by d-separation:

MG = {Σ � 0 : |ΣaC ,bC | = 0 for all a ⊥d b|C}.

I What happens if we introduce hidden variables?

5 / 19



Introducing hidden variables
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X1 = ε1

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ14X1 + λ24X2 + λ34X3 + ε4

X5 = λ15X1 + λ45X4 + ε5

2

3 4 5

G = (V,E,B)

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ24X2 + λ34X3 + ε̃4

X5 = λ45X4 + ε̃5

Σ = (I − Λ)−T Ω(I − Λ)−1,

where Λ =


0 0 0 λ14 λ15
0 0 λ23 λ24 0
0 0 0 λ34 0
0 0 0 0 λ45
0 0 0 0 0

 ∈ RE ,

Ω =


ω11 0 0 0 0

0 ω22 0 0 0
0 0 ω33 0 0
0 0 0 ω44 0
0 0 0 0 ω55

 � 0.

Σ = (I − Λ)−T Ω(I − Λ)−1,

where Λ =


0 λ23 λ24 0
0 0 λ34 0
0 0 0 λ45
0 0 0 0

 ∈ RE ,

Ω =


ω22 0 0 0

0 ω33 0 0
0 0 ω44 ω45
0 0 ω45 ω55

 ∈ PDB .
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Mixed Gaussian Graphical Models

1 2

34

Given a mixed graph G = (V ,E ,B), take

Λ =


0 0 0 0
0 0 λ23 0
0 0 0 λ34
0 0 0 0

 ∈ RE
, Ω =


ω11 ω12 ω13 0
ω12 ω22 0 ω24
ω13 0 ω33 0

0 ω24 0 ω44

 ∈ PDB .

The mixed Gaussian graphical model corresponding to G = (V ,E ,B) is

MG = {Σ � 0 : Σ = (I − Λ)−T Ω(I − Λ)−1, Λ ∈ RE ,Ω ∈ PDB}.

Questions:

I How can we describe MG ? Are CI relations/d-separation enough?

I When is MG =MH?
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Trek separation

I Conditional independence is not enough:

2

3 4 5

MG = {Σ � 0 : |Σ23,45| = 0}.

I Trek separation is a combinatorial criterion for when we have determinantal
constraints.

[Sullivant, Talaska, Draisma 2010]
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Trek separation

a

a b

b
treks

Definition (Sullivant, Talaska, Draisma, 2010)
The sets A and B are trek separated by (E ,F ) if every trek
between a ∈ A and b ∈ B intersects either E on the left or
F on the right.

Example

2

3 4 5

{2, 3} and {4, 5} are trek separated by (∅, {4}).

Thus, |Σ23,45| = 0.

Theorem (Sullivant, Talaska, Draisma, 2010)
For every A,B ⊆ V , the submatrix ΣA,B has rank at most r if and only if there exist sets
E ,F ⊆ V such that |E |+ |F | ≤ r and (E ,F ) trek-separates A and B.

9 / 19



Trek separation

a

a b

b
treks

Definition (Sullivant, Talaska, Draisma, 2010)
The sets A and B are trek separated by (E ,F ) if every trek
between a ∈ A and b ∈ B intersects either E on the left or
F on the right.

Example

2

3 4 5

{2, 3} and {4, 5} are trek separated by (∅, {4}).

Thus, |Σ23,45| = 0.

Theorem (Sullivant, Talaska, Draisma, 2010)
For every A,B ⊆ V , the submatrix ΣA,B has rank at most r if and only if there exist sets
E ,F ⊆ V such that |E |+ |F | ≤ r and (E ,F ) trek-separates A and B.

9 / 19



Trek separation

a

a b

b
treks

Definition (Sullivant, Talaska, Draisma, 2010)
The sets A and B are trek separated by (E ,F ) if every trek
between a ∈ A and b ∈ B intersects either E on the left or
F on the right.

Example

2

3 4 5

{2, 3} and {4, 5} are trek separated by (∅, {4}).

Thus, |Σ23,45| = 0.

Theorem (Sullivant, Talaska, Draisma, 2010)
For every A,B ⊆ V , the submatrix ΣA,B has rank at most r if and only if there exist sets
E ,F ⊆ V such that |E |+ |F | ≤ r and (E ,F ) trek-separates A and B.

9 / 19



Trek separation might not be enough to describe MG

I No CI relations and no trek separation:

1 2

34

MG = {Σ � 0 : f (Σ) = 0},

where

f (Σ) = σ22σ34σ13 − σ22σ33σ14 − σ23σ24σ13 + σ2
23σ14.

2 3 41

Verma graph

MG = {Σ � 0 : fVerma(Σ) = 0},

where

fVerma(Σ) = σ11σ13σ22σ34 − σ11σ13σ23σ24 − σ11σ14σ22σ33

+σ11σ14σ
2
23 − σ2

12σ13σ34 + σ2
12σ14σ33 + σ12σ

2
13σ24 − σ12σ13σ14σ23.
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Nested determinants

I Constraints are determinants of compound matrices.

1 2

34

f (Σ) =

∣∣∣∣|Σ23,23| |Σ23,24|
Σ1,3 Σ1,4

∣∣∣∣ .

2 3 41

Verma graph

fVerma(Σ) =

∣∣∣∣|Σ123,123| |Σ123,124|
Σ1,3 Σ1,4

∣∣∣∣

=

∣∣∣∣|Σ123,134| |Σ123,234|
Σ1,1 Σ1,2

∣∣∣∣ =

∣∣∣∣|Σ12,12| |Σ12,13|
|Σ34,12| |Σ34,13|

∣∣∣∣
I Can we give a combinatorial criterion for when this happens?

I Are these equations enough to describe the model MG ?
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Parentally nested determinants
For i , j ∈ V , i 6= j , define the parentally nested determinant

fij :=
∣∣(|Σpa(r)∪{r},pa(r)∪{c}|)r∈pa(i)∪{j},c∈pa(i)∪{i}

∣∣ .

1 2

34

f (Σ) =

∣∣∣∣|Σ23,23| |Σ23,24|
Σ1,3 Σ1,4

∣∣∣∣ = f41.

2 3 41

fVerma(Σ) =

∣∣∣∣|Σ123,123| |Σ123,124|
Σ1,3 Σ1,4

∣∣∣∣ = f41.

Proposition (Drton, Robeva, Weihs 2018)
Let i and j be vertices of the mixed graph G = (V ,E ,B) such that

1. pa(i)∩ sib(i) = ∅,
2. all vertices in pa(i) are ancestral, and

3. j ∈ V \ (pa(i)∪ sib(i) ∪ {i}).

Then the parentally nested determinant fij vanishes on M(G).
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A vertex v is ancestral if it does not lie on a cycle, and no sibling of v has a directed
path to v .

not allowednot allowed

v v
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Parentally nested determinants
For i , j ∈ V , i 6= j , define the parentally nested determinant

fij :=
∣∣(|Σpa(r)∪{r},pa(r)∪{c}|)r∈pa(i)∪{j},c∈pa(i)∪{i}

∣∣ .
1 2

34

f (Σ) =

∣∣∣∣|Σ23,23| |Σ23,24|
Σ1,3 Σ1,4

∣∣∣∣ = f41.

2 3 41 fVerma(Σ) =

∣∣∣∣|Σ123,123| |Σ123,124|
Σ1,3 Σ1,4

∣∣∣∣ = f41.

Proposition (Drton, Robeva, Weihs 2018)
Let i and j be vertices of the mixed graph G = (V ,E ,B) such that

1. pa(i)∩ sib(i) = ∅,
2. all vertices in pa(i) are ancestral, and

3. j ∈ V \ (pa(i)∪ sib(i) ∪ {i}).

Then the parentally nested determinant fij vanishes on M(G).
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Parentally nested determinants

Theorem (Drton, Robeva, Weihs 2018)
If G = (V ,E ,B) is globally identifiable and almost ancestral, then

MG = {Σ � 0 : fij (Σ) = 0, ∀j ancestral and i 6= j}.

2 3 41

1 2

34

A mixed graph G = (V ,E ,B) is almost ancestral if all of its vertices except for
potentially the last one in topological order are ancestral.

A mixed graph G = (V ,E ,B) is globally identifiable if the map

(Λ,Ω) 7→ Σ = (I − Λ)−T Ω(I − Λ)−1

is injective.
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Restricted trek separation

A B

P Q

(P,Q)-Restricted Trek Separation

Definition
Let G = (V ,E ,B) be an acyclic mixed graph. Let
A,B,P,Q,E ,F ⊆ V .

I A trek between a ∈ A and b ∈ B is a
(P,Q)-restricted trek if all vertices on its
left lie in P and all vertices on its right
lie in Q.

I A and B are (P, Q)-restricted trek
separated by (E ,F ) if every
(P,Q)-restricted trek between A and B
intersects E on left or F on right.

2 3 41

Let A = {2, 3}, B = {2, 4}, P = {2, 3, 4}, Q = {2, 4}.
Then, A and B are (P,Q)-restricted trek separated by
({2}, ∅).
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Restricted trek separation

Proposition (Drton, Robeva, Weihs 2018)
Let G = (V ,E ,B) be an acyclic mixed graph. Let Λ ∈ RE , Ω ∈ PDB . For P,Q ⊆ V ,
consider the matrix

Σ(P,Q) = [(I − Λ)P,P ]−T ΩP,Q [(I − Λ)Q,Q ]−1.

Then, for A,B ⊆ V , the submatrix Σ
(P,Q)
A,B has rank at most

min{|E |+ |F | : A and B are (P,Q)-restricted trek separated by (E ,F )},

and is equal to this minimum generically.

2 3 41

Let A = {2, 3}, B = {2, 4}, P = {2, 3, 4}, Q = {2, 4}.
Then, A and B are (P,Q)-restricted trek separated by
({2}, ∅). Then,

Σ
(234,24)
23,24 has rank at most 1.
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Restricted trek separation

Theorem (Drton, Robeva, Weihs 2018)
If A = {a1, . . . , an} and B = {b1, . . . , bn} are (P,Q)-restricted trek separated,
then, under some conditions∗ there are sets Cij ,Dij ⊆ V , such that the matrix
with entries |ΣCij∪{ai},Dij∪{bj}| has zero determinant.

2 3 41

Let A = {2, 3}, B = {2, 4}, P = {2, 3, 4}, Q = {2, 4}. Then, A
and B are (P,Q)-restricted trek separated by ({2}, ∅), yielding∣∣∣∣|Σ12,12| |Σ12,34|

|Σ13,12| |Σ13,14|

∣∣∣∣ = 0.

Corollary
If G = (V ,E ,B) is globally identifiable and almost ancestral, then the vanishing of
the parentally nested determinants fij (Σ) =

∣∣(|Σpa(r)∪{r},pa(r)∪{c})r∈pa(i)∪{j},c∈pa(i)∪{i}
∣∣

follows from restricted trek separation.
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Remaining questions
I Is restricted trek separation enough to describe MG in general?

I Recursive nesting:

1

2

3 4

f =

∣∣∣∣∣∣
|Σ12,12| |Σ12,14|∣∣∣∣|Σ12,12| |Σ12,13|

Σ2,2 Σ2,3

∣∣∣∣ ∣∣∣∣|Σ12,12| |Σ12,13|
Σ4,2 Σ4,3

∣∣∣∣
∣∣∣∣∣∣ .

I Other hidden variable models?

A B

1 2 3 4 5

f =

∣∣∣∣ |Σ23,45| |Σ25,34|
|Σ123,145| |Σ125,134|

∣∣∣∣ .

I Efficiently checkable criterion for MG =MH?

Thank you!

19 / 19



Remaining questions
I Is restricted trek separation enough to describe MG in general?

I Recursive nesting:

1

2

3 4 f =

∣∣∣∣∣∣
|Σ12,12| |Σ12,14|∣∣∣∣|Σ12,12| |Σ12,13|

Σ2,2 Σ2,3

∣∣∣∣ ∣∣∣∣|Σ12,12| |Σ12,13|
Σ4,2 Σ4,3

∣∣∣∣
∣∣∣∣∣∣ .

I Other hidden variable models?

A B

1 2 3 4 5

f =

∣∣∣∣ |Σ23,45| |Σ25,34|
|Σ123,145| |Σ125,134|

∣∣∣∣ .

I Efficiently checkable criterion for MG =MH?

Thank you!

19 / 19



Remaining questions
I Is restricted trek separation enough to describe MG in general?

I Recursive nesting:

1

2

3 4 f =

∣∣∣∣∣∣
|Σ12,12| |Σ12,14|∣∣∣∣|Σ12,12| |Σ12,13|

Σ2,2 Σ2,3

∣∣∣∣ ∣∣∣∣|Σ12,12| |Σ12,13|
Σ4,2 Σ4,3

∣∣∣∣
∣∣∣∣∣∣ .

I Other hidden variable models?

A B

1 2 3 4 5

f =

∣∣∣∣ |Σ23,45| |Σ25,34|
|Σ123,145| |Σ125,134|

∣∣∣∣ .

I Efficiently checkable criterion for MG =MH?

Thank you!

19 / 19



Remaining questions
I Is restricted trek separation enough to describe MG in general?

I Recursive nesting:

1

2

3 4 f =

∣∣∣∣∣∣
|Σ12,12| |Σ12,14|∣∣∣∣|Σ12,12| |Σ12,13|

Σ2,2 Σ2,3

∣∣∣∣ ∣∣∣∣|Σ12,12| |Σ12,13|
Σ4,2 Σ4,3

∣∣∣∣
∣∣∣∣∣∣ .

I Other hidden variable models?

A B

1 2 3 4 5

f =

∣∣∣∣ |Σ23,45| |Σ25,34|
|Σ123,145| |Σ125,134|

∣∣∣∣ .

I Efficiently checkable criterion for MG =MH?

Thank you!

19 / 19



Remaining questions
I Is restricted trek separation enough to describe MG in general?

I Recursive nesting:

1

2

3 4 f =

∣∣∣∣∣∣
|Σ12,12| |Σ12,14|∣∣∣∣|Σ12,12| |Σ12,13|

Σ2,2 Σ2,3

∣∣∣∣ ∣∣∣∣|Σ12,12| |Σ12,13|
Σ4,2 Σ4,3

∣∣∣∣
∣∣∣∣∣∣ .

I Other hidden variable models?

A B

1 2 3 4 5

f =

∣∣∣∣ |Σ23,45| |Σ25,34|
|Σ123,145| |Σ125,134|

∣∣∣∣ .

I Efficiently checkable criterion for MG =MH?

Thank you!

19 / 19


