Nested Covariance Determinants in Gaussian Graphical Models

Elina Robeva
University of British Columbia

joint work with Mathias Drton and Luca Weihs arXiv:1807.07561

October 25, 2019

Directed graphical models

Let $G=(V, E)$ be a directed acyclic graph.

The distribution of a random vector $X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \in \prod_{i=1}^{5} \mathcal{X}_{i}$ with density p lies in the graphical model corresponding to G if

- Factorization

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) p\left(x_{5} \mid x_{1}, x_{4}\right) .
$$

- Markov properties

$$
X_{1} \Perp X_{2} ; \quad X_{2} \Perp X_{5}\left|X_{1}, X_{4} ; \quad X_{3} \Perp X_{5}\right| X_{1}, X_{4},
$$

which come from the d-separation statements $1 \perp_{d} 2 ; 2 \perp_{d} 5\left|1,4 ; 3 \perp_{d} 5\right| 1,4$.

Directed Gaussian graphical models

Let $X \sim \mathcal{N}(\mu, \Sigma)$. When does the distribution of X lie in the model \mathcal{M}_{G} of Gaussian distributions corresponding to a DAG $G=(V, E)$?

Directed Gaussian graphical models

Let $X \sim \mathcal{N}(\mu, \Sigma)$. When does the distribution of X lie in the model \mathcal{M}_{G} of Gaussian distributions corresponding to a DAG $G=(V, E)$?

- d-separation yields: $\quad a \perp_{d} b\left|C \Longrightarrow X_{a} \Perp X_{b}\right| X_{C} \Longleftrightarrow\left|\Sigma_{a C, b C}\right|=0$, and

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{a C, b C}\right|=0 \text { for all } a \perp_{d} b \mid C\right\} .
$$

Directed Gaussian graphical models

Let $X \sim \mathcal{N}(\mu, \Sigma)$. When does the distribution of X lie in the model \mathcal{M}_{G} of Gaussian distributions corresponding to a DAG $G=(V, E)$?

- d-separation yields: $\quad a \perp_{d} b\left|C \Longrightarrow X_{a} \Perp X_{b}\right| X_{C} \Longleftrightarrow\left|\Sigma_{a C, b C}\right|=0$, and

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{a C, b C}\right|=0 \text { for all } a \perp_{d} b \mid C\right\} .
$$

$$
\begin{gathered}
1 \perp_{d} 2 ; 2 \perp_{d} 5\left|1,4 ; 3 \perp_{d} 5\right| 1,4 \\
\mathcal{M}_{G}=\left\{\Sigma \succ 0: \Sigma_{12}=0,\left|\Sigma_{214,514}\right|=0,\left|\Sigma_{314,514}\right|=0\right\}
\end{gathered}
$$

Directed Gaussian graphical models

Let $X \sim \mathcal{N}(\mu, \Sigma)$. When does the distribution of X lie in the model \mathcal{M}_{G} of Gaussian distributions corresponding to a DAG $G=(V, E)$?

- d-separation yields: $\quad a \perp_{d} b\left|C \Longrightarrow X_{a} \Perp X_{b}\right| X_{C} \Longleftrightarrow\left|\Sigma_{a C, b C}\right|=0$, and

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{a C, b C}\right|=0 \text { for all } a \perp_{d} b \mid C\right\} .
$$

$$
\begin{gathered}
1 \perp_{d} 2 ; 2 \perp_{d} 5\left|1,4 ; 3 \perp_{d} 5\right| 1,4 \\
\mathcal{M}_{G}=\left\{\Sigma \succ 0: \Sigma_{12}=0,\left|\Sigma_{214,514}\right|=0,\left|\Sigma_{314,514}\right|=0\right\}
\end{gathered}
$$

- $\mathcal{M}_{G}=\mathcal{M}_{H}$ if and only if G and H have the same skeleton and the same unshielded colliders.

Directed Gaussian graphical models

$X \sim \mathcal{N}(\mu, \Sigma)$ lies in the model with DAG $G=(V, E)$ if and only if

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right) \text {. }
$$

Directed Gaussian graphical models

$X \sim \mathcal{N}(\mu, \Sigma)$ lies in the model with DAG $G=(V, E)$ if and only if

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right) \text {. }
$$

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

Directed Gaussian graphical models

$X \sim \mathcal{N}(\mu, \Sigma)$ lies in the model with DAG $G=(V, E)$ if and only if

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right) .
$$

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

Let
$\Lambda=\left(\begin{array}{ccccc}0 & 0 & 0 & \lambda_{14} & \lambda_{15} \\ 0 & 0 & \lambda_{23} & \lambda_{24} & 0 \\ 0 & 0 & 0 & \lambda_{34} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{45} \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \in \mathbb{R}^{E}, \quad \Omega=\left(\begin{array}{ccccc}\omega_{1} & 0 & 0 & 0 & 0 \\ 0 & \omega_{2} & 0 & 0 & 0 \\ 0 & 0 & \omega_{3} & 0 & 0 \\ 0 & 0 & 0 & \omega_{4} & 0 \\ 0 & 0 & 0 & 0 & \omega_{5}\end{array}\right) \succ 0$.
Then,

$$
X=\Lambda^{T} X+\epsilon \Longleftrightarrow X=(I-\Lambda)^{-T} \epsilon
$$

and,

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\} .
$$

This is a parametric description of \mathcal{M}_{G}.

Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\} .
$$

This is a parametric description of \mathcal{M}_{G}.

And the implicit description of \mathcal{M}_{G} is given by d-separation:

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{a C, b C}\right|=0 \text { for all } a \perp_{d} b \mid C\right\} .
$$

Directed Gaussian graphical models

The directed Gaussian graphical model corresponding to a DAG $G=(V, E)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\} .
$$

This is a parametric description of \mathcal{M}_{G}.

And the implicit description of \mathcal{M}_{G} is given by d-separation:

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{a C, b C}\right|=0 \text { for all } a \perp_{d} b \mid C\right\} .
$$

- What happens if we introduce hidden variables?

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{24} X_{2}+\lambda_{34} X_{3}+\tilde{\epsilon}_{4} \\
& X_{5}=\lambda_{45} X_{4}+\tilde{\epsilon}_{5}
\end{aligned}
$$

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{24} X_{2}+\lambda_{34} X_{3}+\tilde{\epsilon}_{4} \\
& X_{5}=\lambda_{45} X_{4}+\tilde{\epsilon}_{5}
\end{aligned}
$$

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

where $\Lambda=\left(\begin{array}{ccccc}0 & 0 & 0 & \lambda_{14} & \lambda_{15} \\ 0 & 0 & \lambda_{23} & \lambda_{24} & 0 \\ 0 & 0 & 0 & \lambda_{34} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{45} \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \in \mathbb{R}^{E}$,

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

$$
\text { where } \Lambda=\left(\begin{array}{cccc}
0 & \lambda_{23} & \lambda_{24} & 0 \\
0 & 0 & \lambda_{34} & 0 \\
0 & 0 & 0 & \lambda_{45} \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathbb{R}^{E}
$$

$$
\Omega=\left(\begin{array}{ccccc}
\omega_{11} & 0 & 0 & 0 & 0 \\
0 & \omega_{22} & 0 & 0 & 0 \\
0 & 0 & \omega_{33} & 0 & 0 \\
0 & 0 & 0 & \omega_{44} & 0 \\
0 & 0 & 0 & 0 & \omega_{55}
\end{array}\right) \succ 0 .
$$

$$
\Omega=\left(\begin{array}{cccc}
\omega_{22} & 0 & 0 & 0 \\
0 & \omega_{33} & 0 & 0 \\
0 & 0 & \omega_{44} & \omega_{45} \\
0 & 0 & \omega_{45} & \omega_{55}
\end{array}\right) \in \mathrm{PD}^{B}
$$

Mixed Gaussian Graphical Models

Given a mixed graph $G=(V, E, B)$, take

$$
\Lambda=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{23} & 0 \\
0 & 0 & 0 & \lambda_{34} \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathbb{R}^{E}, \Omega=\left(\begin{array}{cccc}
\omega_{11} & \omega_{12} & \omega_{13} & 0 \\
\omega_{12} & \omega_{22} & 0 & \omega_{24} \\
\omega_{13} & 0 & \omega_{33} & 0 \\
0 & \omega_{24} & 0 & \omega_{44}
\end{array}\right) \in P D_{B}
$$

The mixed Gaussian graphical model corresponding to $G=(V, E, B)$ is

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \in \mathrm{PD}_{B}\right\}
$$

Questions:

- How can we describe \mathcal{M}_{G} ? Are Cl relations/d-separation enough?
- When is $\mathcal{M}_{G}=\mathcal{M}_{H}$?

Trek separation

- Conditional independence is not enough:

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{23,45}\right|=0\right\}
$$

Trek separation

- Conditional independence is not enough:

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0:\left|\Sigma_{23,45}\right|=0\right\}
$$

- Trek separation is a combinatorial criterion for when we have determinantal constraints.
[Sullivant, Talaska, Draisma 2010]

Trek separation

Trek separation

Definition (Sullivant, Talaska, Draisma, 2010)
The sets A and B are trek separated by (E, F) if every trek between $a \in A$ and $b \in B$ intersects either E on the left or F on the right.

Example

$\{2,3\}$ and $\{4,5\}$ are trek separated by $(\emptyset,\{4\})$.

Trek separation

Definition (Sullivant, Talaska, Draisma, 2010) The sets A and B are trek separated by (E, F) if every trek between $a \in A$ and $b \in B$ intersects either E on the left or F on the right.

Example

$\{2,3\}$ and $\{4,5\}$ are trek separated by $(\emptyset,\{4\})$. Thus, $\left|\Sigma_{23,45}\right|=0$.

Theorem (Sullivant, Talaska, Draisma, 2010)
For every $A, B \subseteq V$, the submatrix $\Sigma_{A, B}$ has rank at most r if and only if there exist sets $E, F \subseteq V$ such that $|E|+|F| \leq r$ and (E, F) trek-separates A and B.

Trek separation might not be enough to describe \mathcal{M}_{G}

- No Cl relations and no trek separation:

$$
\mathcal{M}_{G}=\{\Sigma \succ 0: f(\Sigma)=0\}
$$

Trek separation might not be enough to describe \mathcal{M}_{G}

- No Cl relations and no trek separation:

$$
\mathcal{M}_{G}=\{\Sigma \succ 0: f(\Sigma)=0\}
$$

where

$$
f(\Sigma)=\sigma_{22} \sigma_{34} \sigma_{13}-\sigma_{22} \sigma_{33} \sigma_{14}-\sigma_{23} \sigma_{24} \sigma_{13}+\sigma_{23}^{2} \sigma_{14}
$$

Trek separation might not be enough to describe \mathcal{M}_{G}

- No Cl relations and no trek separation:

$$
\mathcal{M}_{G}=\{\Sigma \succ 0: f(\Sigma)=0\}
$$

where

$$
f(\Sigma)=\sigma_{22} \sigma_{34} \sigma_{13}-\sigma_{22} \sigma_{33} \sigma_{14}-\sigma_{23} \sigma_{24} \sigma_{13}+\sigma_{23}^{2} \sigma_{14}
$$

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0: f_{\text {Verma }}(\Sigma)=0\right\}
$$

Trek separation might not be enough to describe \mathcal{M}_{G}

- No Cl relations and no trek separation:

$$
\mathcal{M}_{G}=\{\Sigma \succ 0: f(\Sigma)=0\}
$$

where

$$
f(\Sigma)=\sigma_{22} \sigma_{34} \sigma_{13}-\sigma_{22} \sigma_{33} \sigma_{14}-\sigma_{23} \sigma_{24} \sigma_{13}+\sigma_{23}^{2} \sigma_{14}
$$

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0: f_{\operatorname{Verma}}(\Sigma)=0\right\}
$$

where

$$
\begin{gathered}
f_{\text {Verma }}(\Sigma)=\sigma_{11} \sigma_{13} \sigma_{22} \sigma_{34}-\sigma_{11} \sigma_{13} \sigma_{23} \sigma_{24}-\sigma_{11} \sigma_{14} \sigma_{22} \sigma_{33} \\
+\sigma_{11} \sigma_{14} \sigma_{23}^{2}-\sigma_{12}^{2} \sigma_{13} \sigma_{34}+\sigma_{12}^{2} \sigma_{14} \sigma_{33}+\sigma_{12} \sigma_{13}^{2} \sigma_{24}-\sigma_{12} \sigma_{13} \sigma_{14} \sigma_{23}
\end{gathered}
$$

Nested determinants

- Constraints are determinants of compound matrices.

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| .
$$

Nested determinants

- Constraints are determinants of compound matrices.

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| .
$$

$$
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|
$$

Nested determinants

- Constraints are determinants of compound matrices.

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| .
$$

$$
\begin{gathered}
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| \\
=\left|\begin{array}{|cc}
\left|\Sigma_{123,134}\right| & \left|\Sigma_{123,234}\right| \\
\Sigma_{1,1} & \Sigma_{1,2}
\end{array}\right|=\left|\begin{array}{c}
\left|\Sigma_{12,12}\right| \\
\left|\Sigma_{34,12}\right| \\
\left|\Sigma_{12,13}\right| \\
\left|\Sigma_{34,13}\right|
\end{array}\right|
\end{gathered}
$$

Nested determinants

- Constraints are determinants of compound matrices.

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| .
$$

$$
\begin{gathered}
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right| \\
=\left|\begin{array}{cc}
\left|\Sigma_{123,134}\right| & \left|\Sigma_{123,234}\right| \\
\Sigma_{1,1} & \Sigma_{1,2}
\end{array}\right|=\left|\begin{array}{cc}
\left|\Sigma_{12,12}\right| & \left|\Sigma_{12,13}\right| \\
\left|\Sigma_{34,12}\right| & \left|\Sigma_{34,13}\right|
\end{array}\right|
\end{gathered}
$$

- Can we give a combinatorial criterion for when this happens?
- Are these equations enough to describe the model \mathcal{M}_{G} ?

Parentally nested determinants

For $i, j \in V, i \neq j$, define the parentally nested determinant

$$
f_{i j}:=\left|\left(\left|\Sigma_{\mathrm{pa}(r) \cup\{r\}, \mathrm{pa}(r) \cup\{c\}}\right|\right)_{r \in \mathrm{pa}(i) \cup\{j\}, c \in \mathrm{pa}(i) \cup\{i\}}\right| .
$$

Parentally nested determinants

For $i, j \in V, i \neq j$, define the parentally nested determinant

$$
f_{i j}:=\left|\left(\left|\Sigma_{\mathrm{pa}(r) \cup\{r\}, \mathrm{pa}(r) \cup\{c\}}\right|\right)_{r \in \mathrm{pa}(i) \cup\{j\}, c \in \mathrm{pa}(i) \cup\{i\}}\right| .
$$

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

$$
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

Parentally nested determinants

For $i, j \in V, i \neq j$, define the parentally nested determinant

$$
f_{i j}:=\left|\left(\left|\Sigma_{\mathrm{pa}(r) \cup\{r\}, \mathrm{pa}(r) \cup\{c\}}\right|\right)_{r \in \mathrm{pa}(i) \cup\{j\}, c \in \mathrm{pa}(i) \cup\{i\}}\right| .
$$

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

$$
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

Proposition (Drton, Robeva, Weihs 2018)

Let i and j be vertices of the mixed graph $G=(V, E, B)$ such that

1. $p a(i) \cap \operatorname{sib}(i)=\emptyset$,
2. all vertices in $\mathrm{pa}(i)$ are ancestral, and
3. $j \in V \backslash(p a(i) \cup \operatorname{sib}(i) \cup\{i\})$.

Then the parentally nested determinant $f_{i j}$ vanishes on $\mathcal{M}(G)$.

Parentally nested determinants

For $i, j \in V, i \neq j$, define the parentally nested determinant

$$
f_{i j}:=\left|\left(\left|\Sigma_{\mathrm{pa}(r) \cup\{r\}, \mathrm{pa}(r) \cup\{c\}}\right|\right)_{r \in \mathrm{pa}(i) \cup\{j\}, c \in \mathrm{pa}(i) \cup\{i\}}\right| .
$$

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

A vertex v is ancestral if it does not lie on a cycle, and no sibling of v has a directed path to v.

Parentally nested determinants

For $i, j \in V, i \neq j$, define the parentally nested determinant

$$
f_{i j}:=\left|\left(\left|\Sigma_{\mathrm{pa}(r) \cup\{r\}, \mathrm{pa}(r) \cup\{c\}}\right|\right)_{r \in \mathrm{pa}(i) \cup\{j\}, c \in \operatorname{pa}(i) \cup\{i\}}\right| .
$$

$$
f(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{23,23}\right| & \left|\Sigma_{23,24}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

$$
f_{\text {Verma }}(\Sigma)=\left|\begin{array}{cc}
\left|\Sigma_{123,123}\right| & \left|\Sigma_{123,124}\right| \\
\Sigma_{1,3} & \Sigma_{1,4}
\end{array}\right|=f_{41} .
$$

Proposition (Drton, Robeva, Weihs 2018)

Let i and j be vertices of the mixed graph $G=(V, E, B)$ such that

1. $p a(i) \cap \operatorname{sib}(i)=\emptyset$,
2. all vertices in $p a(i)$ are ancestral, and
3. $j \in V \backslash(p a(i) \cup \operatorname{sib}(i) \cup\{i\})$.

Then the parentally nested determinant $f_{i j}$ vanishes on $\mathcal{M}(G)$.

Parentally nested determinants

Theorem (Drton, Robeva, Weihs 2018)
If $G=(V, E, B)$ is globally identifiable and almost ancestral, then

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0: f_{i j}(\Sigma)=0, \forall j \text { ancestral and } i \neq j\right\}
$$

Parentally nested determinants

Theorem (Drton, Robeva, Weihs 2018)
If $G=(V, E, B)$ is globally identifiable and almost ancestral, then

$$
\mathcal{M}_{G}=\left\{\Sigma \succ 0: f_{i j}(\Sigma)=0, \forall j \text { ancestral and } i \neq j\right\}
$$

A mixed graph $G=(V, E, B)$ is almost ancestral if all of its vertices except for potentially the last one in topological order are ancestral.

A mixed graph $G=(V, E, B)$ is globally identifiable if the map

$$
(\Lambda, \Omega) \mapsto \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

is injective.

Restricted trek separation

(P, Q)-Restricted Trek Separation

Definition

Let $G=(V, E, B)$ be an acyclic mixed graph. Let $A, B, P, Q, E, F \subseteq V$.

- A trek between $a \in A$ and $b \in B$ is a (P, Q)-restricted trek if all vertices on its left lie in P and all vertices on its right lie in Q.
- A and B are (P, Q)-restricted trek separated by (E, F) if every (P, Q)-restricted trek between A and B intersects E on left or F on right.

Restricted trek separation

(P, Q)-Restricted Trek Separation

Definition

Let $G=(V, E, B)$ be an acyclic mixed graph. Let $A, B, P, Q, E, F \subseteq V$.

- A trek between $a \in A$ and $b \in B$ is a (P, Q)-restricted trek if all vertices on its left lie in P and all vertices on its right lie in Q.
- A and B are (P, Q)-restricted trek separated by (E, F) if every (P, Q)-restricted trek between A and B intersects E on left or F on right.

Let $A=\{2,3\}, B=\{2,4\}, P=\{2,3,4\}, Q=\{2,4\}$. Then, A and B are (P, Q)-restricted trek separated by ($\{2\}, \emptyset)$.

Restricted trek separation

Proposition (Drton, Robeva, Weihs 2018)

Let $G=(V, E, B)$ be an acyclic mixed graph. Let $\Lambda \in \mathbb{R}^{E}, \Omega \in P D_{B}$. For $P, Q \subseteq V$, consider the matrix

$$
\Sigma^{(P, Q)}=\left[(I-\Lambda)_{P, P}\right]^{-T} \Omega_{P, Q}\left[(I-\Lambda)_{Q, Q}\right]^{-1}
$$

Then, for $A, B \subseteq V$, the submatrix $\Sigma_{A, B}^{(P, Q)}$ has rank at most

$$
\min \{|E|+|F|: A \text { and } B \text { are }(P, Q) \text {-restricted trek separated by }(E, F)\},
$$

and is equal to this minimum generically.

Restricted trek separation

Proposition (Drton, Robeva, Weihs 2018)

Let $G=(V, E, B)$ be an acyclic mixed graph. Let $\Lambda \in \mathbb{R}^{E}, \Omega \in P D_{B}$. For $P, Q \subseteq V$, consider the matrix

$$
\Sigma^{(P, Q)}=\left[(I-\Lambda)_{P, P}\right]^{-T} \Omega_{P, Q}\left[(I-\Lambda)_{Q, Q}\right]^{-1}
$$

Then, for $A, B \subseteq V$, the submatrix $\Sigma_{A, B}^{(P, Q)}$ has rank at most

$$
\min \{|E|+|F|: A \text { and } B \text { are }(P, Q) \text {-restricted trek separated by }(E, F)\},
$$

and is equal to this minimum generically.

Let $A=\{2,3\}, B=\{2,4\}, P=\{2,3,4\}, Q=\{2,4\}$. Then, A and B are (P, Q)-restricted trek separated by $(\{2\}, \emptyset)$. Then,

$$
\sum_{23,24}^{(234,24)} \text { has rank at most } 1
$$

Restricted trek separation

Theorem (Drton, Robeva, Weihs 2018)
If $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ are (P, Q)-restricted trek separated, then, under some conditions* there are sets $C_{i j}, D_{i j} \subseteq V$, such that the matrix with entries $\left|\Sigma_{C_{i j} \cup\left\{a_{i}\right\}, D_{i j} \cup\left\{b_{j}\right\}}\right|$ has zero determinant.

Let $A=\{2,3\}, B=\{2,4\}, P=\{2,3,4\}, Q=\{2,4\}$. Then, A and B are (P, Q)-restricted trek separated by $(\{2\}, \emptyset)$, yielding

$$
\left|\begin{array}{ll}
\left|\Sigma_{12,12}\right| & \left|\Sigma_{12,34}\right| \\
\left|\Sigma_{13,12}\right| & \left|\Sigma_{13,14}\right|
\end{array}\right|=0 .
$$

Restricted trek separation

Theorem (Drton, Robeva, Weihs 2018)
If $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$ are (P, Q)-restricted trek separated, then, under some conditions* there are sets $C_{i j}, D_{i j} \subseteq V$, such that the matrix with entries $\left|\Sigma_{C_{i j} \cup\left\{a_{i}\right\}, D_{i j} \cup\left\{b_{j}\right\}}\right|$ has zero determinant.

Let $A=\{2,3\}, B=\{2,4\}, P=\{2,3,4\}, Q=\{2,4\}$. Then, A and B are (P, Q)-restricted trek separated by $(\{2\}, \emptyset)$, yielding

$$
\left|\begin{array}{ll}
\left|\Sigma_{12,12}\right| & \left|\Sigma_{12,34}\right| \\
\left|\Sigma_{13,12}\right| & \left|\Sigma_{13,14}\right|
\end{array}\right|=0
$$

Corollary

If $G=(V, E, B)$ is globally identifiable and almost ancestral, then the vanishing of the parentally nested determinants $f_{i j}(\Sigma)=\left|\left(\mid \Sigma_{p a(r) \cup\{r\}, p a(r) \cup\{c\}}\right)_{r \in p a(i) \cup\{j\}, c \in p a(i) \cup\{i\}}\right|$ follows from restricted trek separation.

Remaining questions

- Is restricted trek separation enough to describe \mathcal{M}_{G} in general?

Remaining questions

- Is restricted trek separation enough to describe \mathcal{M}_{G} in general?
- Recursive nesting:

Remaining questions

- Is restricted trek separation enough to describe \mathcal{M}_{G} in general?
- Recursive nesting:

$$
f=\left|\right| \quad\left|\begin{array}{cc}
\left|\Sigma_{12,12}\right| & \left|\Sigma_{12,13}\right| \mid \\
\Sigma_{4,2} & \Sigma_{4,3}
\end{array}\right| .
$$

- Other hidden variable models?

$$
f=\left|\begin{array}{cc}
\left|\Sigma_{23,45}\right| & \left|\Sigma_{25,34}\right| \\
\left|\Sigma_{123,145}\right| & \left|\Sigma_{125,134}\right|
\end{array}\right| .
$$

Remaining questions

- Is restricted trek separation enough to describe \mathcal{M}_{G} in general?
- Recursive nesting:

- Other hidden variable models?

$$
f=\left|\begin{array}{cc}
\left|\Sigma_{23,45}\right| & \left|\Sigma_{25,34}\right| \\
\left|\Sigma_{123,145}\right| & \left|\Sigma_{125,134}\right|
\end{array}\right| .
$$

- Efficiently checkable criterion for $\mathcal{M}_{G}=\mathcal{M}_{H}$?

Remaining questions

- Is restricted trek separation enough to describe \mathcal{M}_{G} in general?
- Recursive nesting:

- Other hidden variable models?

$$
f=\left|\begin{array}{cc}
\left|\Sigma_{23,45}\right| & \left|\Sigma_{25,34}\right| \\
\left|\Sigma_{123,145}\right| & \left|\Sigma_{125,134}\right|
\end{array}\right| .
$$

- Efficiently checkable criterion for $\mathcal{M}_{G}=\mathcal{M}_{H}$?

Thank you!

