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From a Bayesian network to a staged tree

X1

X2

X3 X4

X1 = Environment: {benign, hostile}
X2 = Activity: {high, low}
X3 = Survival: {die, survive}
X4 = Recovery: {full, partial}

Conditional independence statements:

X1 ⊥⊥ X2 and (X1, X2) ⊥⊥ X4|X3

Extra: If the environment is hostile then a cell gets damaged and
might either die or survive. Whether a cell dies or survives does
not depend on its activity.

P (X3=die |X1=hostile, X2=high)= P (X3=die |X1=hostile, X2= low)

P (X3=survive |X1=hostile, X2=high)= P (X3=survive |X1=hostile, X2= low)
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A staged tree
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A staged tree model
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ΘT := {(s0, . . . , s7) | s0 + s1 =
s2 + s3 = s4 + s5 = s6 + s7 = 1}

= ∆1 ×∆1 ×∆1 ×∆1

ΨT : ΘT →∆7

(s0, . . . , s7) 7→ (s0s2s4, s0s2s5s6, . . . ,

s1s2, s1s3)

M = im(ΨT ) is the vanishing of

p5p6 − p2p7, p3p6 − p0p7,

p4p6 − p1p7, p2p4 − p1p5,

p2p3 − p0p5, p1p3 − p0p4
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Summary
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• Staged trees can be used to encode conditional independence
statements.

• They can also capture context specific information.
• The outcome space is not necessarily a cartesian product.
• J.Q. Smith and P.E. Anderson. Conditional independence and

chain event graphs. Artificial Intelligence, 172(1):42-68,2008.
• J.Q. Smith, C. Görgen, and R.A. Collazo. Chain event graphs.

CRC Press, 2018.
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Definitions and Notation

• Let T = (V,E) be a directed rooted tree.
• Given a set L of labels, to each e ∈ E we associate a label

from L via the rule θ : E → L.
• E(v) = {(v, u) | u ∈ ch(v)}

• A tree T with a labelling θ : E → L is a staged tree if:
(1) for each v ∈ V, |θv| = |E(v)|, and
(2) for any two vertices v, w ∈ V the sets θv, θw are either equal

or disjoint.
• v, w ∈ V are equivalent if and only if θv = θw. The partition

induced by this equivalence relation on V is the set of stages.
• Example: L = {s0, s1, s2, s3, s4, s5, s6, s7}
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Definitions and Notation

• Let T be a staged tree with labelling θ.
• Λ = set of root-to-leaf paths in T .
• Set θ = (θ(e) | θ(e) ∈ L ) and define the parameter space,

ΘT := { θ | θ(e) ∈ (0, 1) and for all v ∈ V,
∑

e∈E(v)
θ(e) = 1 }.

• A staged tree model M(T ,θ) is the image of the map
ΨT : ΘT → ∆◦|Λ|−1defined by

θ 7→ pθ =

 ∏
e∈E(λ)

θ(e)


λ∈Λ

.
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Definitions and Notation

• Parametric: A staged tree model M(T ,θ) is the image of the
map ΨT : ΘT → ∆◦|Λ|−1defined by

θ 7→ pθ =

 ∏
e∈E(λ)

θ(e)


λ∈Λ

.

• R[p]T := R[pλ | λ ∈ Λ] and R[ΘT ] := R[L]/〈
∑
−1〉.

• Implicit: Consider the map of polynomial rings
ϕ : R[p]T → R[ΘT ] defined by

pλ 7→
∏

e∈E(λ)
θ(e) . (1)

M(T ,θ) is the zero set of ker(ϕ) in ∆|Λ|−1.
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Goals

• What polynomials generate the ideal ker(ϕ)?
• When is the ideal ker(ϕ) defined by binomials?
• Can we find a Gröbner basis for ker(ϕ)?

Previous work:
• L.D. Garcia, M. Stillman, and B. Sturmfels. Algebraic

geometry of Bayesian networks. J. Symbolic Comput.,
39(3-4):331–355, 2005.

• D. Geiger, C. Meek, and B. Sturmfels. On the toric algebra of
graphical models. Ann. Statist., 34(3):1463–1492, 2006.

• P. Diaconis and B. Sturmfels. Algebraic algorithms for
sampling from conditional distributions. Ann. Statist.,
26(1):363-397, 1998.
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A staged tree model
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ΘT := {(s0, . . . , s7) | s0 + s1 =
s2 + s3 = s4 + s5 = s6 + s7 = 1}

= ∆1 ×∆1 ×∆1 ×∆1

ΨT : ΘT →∆7

(s0, . . . , s7) 7→ (s0s2s4, s0s2s5s6, . . . ,

s1s2, s1s3)

M = im(ΨT ) is the vanishing of

p5p6 − p2p7, p3p6 − p0p7,

p4p6 − p1p7, p2p4 − p1p5,

p2p3 − p0p5, p1p3 − p0p4
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Theorem[Ananiadi, D., Görgen]:
If (T , θ) is a balanced and stratified staged tree then ker(ϕ) is
generated by a Gröbner basis of quadratic binomials with
squarefree initial ideal.
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Combinatorics of trees

• Let T be a tree. For v ∈ V , the level of v is the number of
edges in the unique path from the root of T to v.

• The staged tree T is stratified if all its leaves have the same
level and if every two vertices in the same stage have the
same level.
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Interpolating polynomials

• Let (T , θ) be a staged tree, v ∈ V , and Tv the subtree of T
rooted at v.

• Let Λv be the set of v-to-leaf paths in T and define

t(v) :=
∑
λ∈Λv

∏
e∈E(λ)

θ(e).

• When v is the root of T , the polynomial t(v) is called the
interpolating polynomial of T .

• Two staged trees (T , θ) and (T , θ′) with the same label set L
are polynomially equivalent if their interpolating polynomials
are equal.

• C. Görgen, A. Bigatti, E. Riccomagno, and J. Q. Smith.
Discovery of statistical equivalence classes using computer
algebra. International Journal of Approximate Reasoning,
95:167–184, 2018.
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• Let v, w be two vertices in the same stage with
ch(v) = {v0, . . . , vk} and ch(w) = {w0, . . . , wk}.

• After reindexing the elements in ch(w) we may assume that
θ(v, vi) = θ(w,wi) for all i ∈ {0, . . . , k}.

• The vertices v, w satisfy condition (?) if

t(vi)t(wj) = t(wi)t(vj) in R[L], for all i 6= j ∈ {0, . . . , k}.

• The staged tree (T , θ) is balanced if every pair of vertices in
the same stage satisfy condition (?).

• v1 and v2 satisfy condition (?) since t(v3)t(◦) = t(v4)t(◦).
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• We say that two vertices v, w ∈ V are in the same position if
they are in the same stage and t(v) = t(w).

• Lemma: Let (T , θ) be a stratified staged tree. Suppose that
every two vertices in T that are in the same stage are also in
the same position. Then (T , θ) is balanced.
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Theorem[Ananiadi, D., Görgen]:
If (T , θ) is a balanced and stratified staged tree then ker(ϕ) is
generated by a Gröbner basis of quadratic binomials with
squarefree initial ideal.
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Theorem[Ananiadi, D., Görgen]:
If (T , θ) is a balanced and stratified staged tree then ker(ϕ) is
generated by a Gröbner basis of quadratic binomials with
squarefree initial ideal.

T1 :

X1 → X2 → X3 → X4
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proof.

• The balanced condition guarantees that ker(ϕ) is a binomial
ideal.

• The stratified and balanced condition implies ker(ϕ) can
constructed inductively in a finite number of steps using toric
fiber products.
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