Gröbner bases for staged trees

Eliana Duarte

Max-Planck-Institut für
Mathematik in den Naturwissenschaften

Collaborators

Christiane Görgen MPI MIS arXiv:1802.04511

Lamprini Ananiadi OVGU Magdeburg arXiv:1910.02721

From a Bayesian network to a staged tree

$$
\begin{aligned}
& X_{1}=\text { Environment: }\{\text { benign, hostile }\} \\
& X_{2}=\text { Activity: }\{\text { high, low }\} \\
& X_{3}=\text { Survival: }\{\text { die, survive }\} \\
& X_{4}=\text { Recovery: }\{\text { full, partial }\}
\end{aligned}
$$

Conditional independence statements:

$$
X_{1} \Perp X_{2} \text { and }\left(X_{1}, X_{2}\right) \Perp X_{4} \mid X_{3}
$$

From a Bayesian network to a staged tree

$$
\begin{aligned}
& X_{1}=\text { Environment: }\{\text { benign, hostile }\} \\
& X_{2}=\text { Activity: }\{\text { high, low }\} \\
& X_{3}=\text { Survival: }\{\text { die, survive }\} \\
& X_{4}=\text { Recovery: }\{\text { full, partial }\}
\end{aligned}
$$

Conditional independence statements:

$$
X_{1} \Perp X_{2} \text { and }\left(X_{1}, X_{2}\right) \Perp X_{4} \mid X_{3}
$$

Extra: If the environment is hostile then a cell gets damaged and might either die or survive. Whether a cell dies or survives does not depend on its activity.

$$
\begin{gathered}
P\left(X_{3}=\text { die } \mid X_{1}=\text { hostile, } X_{2}=\text { high }\right)=P\left(X_{3}=\text { die } \mid X_{1}=\text { hostile, } X_{2}=\text { low }\right) \\
P\left(X_{3}=\text { survive } \mid X_{1}=\text { hostile, } X_{2}=\text { high }\right)=P\left(X_{3}=\text { survive } \mid X_{1}=\text { hostile, } X_{2}=\text { low }\right)
\end{gathered}
$$

Extra

A staged tree

A staged tree model

$$
\begin{gathered}
\Theta_{\mathcal{T}}:=\left\{\left(s_{0}, \ldots, s_{7}\right) \mid s_{0}+s_{1}=\right. \\
\left.s_{2}+s_{3}=s_{4}+s_{5}=s_{6}+s_{7}=1\right\} \\
=\Delta_{1} \times \Delta_{1} \times \Delta_{1} \times \Delta_{1} \\
\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \rightarrow \Delta_{7} \\
\left(s_{0}, \ldots, s_{7}\right) \mapsto\left(s_{0} s_{2} s_{4}, s_{0} s_{2} s_{5} s_{6}, \ldots\right. \\
\left.s_{1} s_{2}, s_{1} s_{3}\right)
\end{gathered}
$$

$\mathcal{M}=\operatorname{im}\left(\Psi_{\mathcal{T}}\right)$ is the vanishing of

$$
\begin{aligned}
& p_{5} p_{6}-p_{2} p_{7}, \quad p_{3} p_{6}-p_{0} p_{7}, \\
& p_{4} p_{6}-p_{1} p_{7}, \quad p_{2} p_{4}-p_{1} p_{5}, \\
& p_{2} p_{3}-p_{0} p_{5}, \quad p_{1} p_{3}-p_{0} p_{4}
\end{aligned}
$$

Summary

- Staged trees can be used to encode conditional independence statements.

Summary

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.

Summary

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.
- The outcome space is not necessarily a cartesian product.

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.
- The outcome space is not necessarily a cartesian product.
- J.Q. Smith and P.E. Anderson. Conditional independence and chain event graphs. Artificial Intelligence, 172(1):42-68,2008.
- J.Q. Smith, C. Görgen, and R.A. Collazo. Chain event graphs. CRC Press, 2018.

Definitions and Notation

- Let $\mathcal{T}=(V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta: E \rightarrow \mathcal{L}$.
- $E(v)=\{(v, u) \mid u \in \operatorname{ch}(v)\}$

Definitions and Notation

- Let $\mathcal{T}=(V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta: E \rightarrow \mathcal{L}$.
- $E(v)=\{(v, u) \mid u \in \operatorname{ch}(v)\}$
- A tree \mathcal{T} with a labelling $\theta: E \rightarrow \mathcal{L}$ is a staged tree if:
(1) for each $v \in V,\left|\theta_{v}\right|=|E(v)|$, and
(2) for any two vertices $v, w \in V$ the sets θ_{v}, θ_{w} are either equal or disjoint.
- $v, w \in V$ are equivalent if and only if $\theta_{v}=\theta_{w}$. The partition induced by this equivalence relation on V is the set of stages.

Definitions and Notation

- Let $\mathcal{T}=(V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta: E \rightarrow \mathcal{L}$.
- $E(v)=\{(v, u) \mid u \in \operatorname{ch}(v)\}$
- A tree \mathcal{T} with a labelling $\theta: E \rightarrow \mathcal{L}$ is a staged tree if:
(1) for each $v \in V,\left|\theta_{v}\right|=|E(v)|$, and
(2) for any two vertices $v, w \in V$ the sets θ_{v}, θ_{w} are either equal or disjoint.
- $v, w \in V$ are equivalent if and only if $\theta_{v}=\theta_{w}$. The partition induced by this equivalence relation on V is the set of stages.
- Example: $\mathcal{L}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$

Definitions and Notation

- Let \mathcal{T} be a staged tree with labelling θ.
- $\Lambda=$ set of root-to-leaf paths in \mathcal{T}.
- Set $\bar{\theta}=(\theta(e) \mid \theta(e) \in \mathcal{L})$ and define the parameter space,

$$
\Theta_{\mathcal{T}}:=\left\{\bar{\theta} \mid \theta(e) \in(0,1) \text { and for all } v \in V, \sum_{e \in E(v)} \theta(e)=1\right\} .
$$

Definitions and Notation

- Let \mathcal{T} be a staged tree with labelling θ.
- $\Lambda=$ set of root-to-leaf paths in \mathcal{T}.
- Set $\bar{\theta}=(\theta(e) \mid \theta(e) \in \mathcal{L})$ and define the parameter space,

$$
\Theta_{\mathcal{T}}:=\left\{\bar{\theta} \mid \theta(e) \in(0,1) \text { and for all } v \in V, \sum_{e \in E(v)} \theta(e)=1\right\} .
$$

- A staged tree model $\mathcal{M}_{(\mathcal{T}, \theta)}$ is the image of the map $\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \rightarrow \Delta_{|\Lambda|-1}^{\circ}$ defined by

$$
\bar{\theta} \mapsto p_{\bar{\theta}}=\left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}
$$

Definitions and Notation

- Parametric: A staged tree model $\mathcal{M}_{(\mathcal{T}, \theta)}$ is the image of the $\operatorname{map} \Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \rightarrow \Delta_{|\Lambda|-1}^{\circ}$ defined by

$$
\bar{\theta} \mapsto p_{\bar{\theta}}=\left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}
$$

- $\mathbb{R}[p]_{\mathcal{T}}:=\mathbb{R}\left[p_{\lambda} \mid \lambda \in \Lambda\right]$ and $\mathbb{R}\left[\Theta_{\mathcal{T}}\right]:=\mathbb{R}[\mathcal{L}] /\left\langle\sum-1\right\rangle$.

Definitions and Notation

- Parametric: A staged tree model $\mathcal{M}_{(\mathcal{T}, \theta)}$ is the image of the $\operatorname{map} \Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \rightarrow \Delta_{|\Lambda|-1}^{\circ}$ defined by

$$
\bar{\theta} \mapsto p_{\bar{\theta}}=\left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}
$$

- $\mathbb{R}[p]_{\mathcal{T}}:=\mathbb{R}\left[p_{\lambda} \mid \lambda \in \Lambda\right]$ and $\mathbb{R}\left[\Theta_{\mathcal{T}}\right]:=\mathbb{R}[\mathcal{L}] /\left\langle\sum-1\right\rangle$.
- Implicit: Consider the map of polynomial rings $\varphi: \mathbb{R}[p]_{\mathcal{T}} \rightarrow \mathbb{R}\left[\Theta_{\mathcal{T}}\right]$ defined by

$$
\begin{equation*}
p_{\lambda} \mapsto \prod_{e \in E(\lambda)} \theta(e) \tag{1}
\end{equation*}
$$

$\mathcal{M}_{(\mathcal{T}, \theta)}$ is the zero set of $\operatorname{ker}(\varphi)$ in $\Delta_{|\Lambda|-1}$.

Goals

- What polynomials generate the ideal $\operatorname{ker}(\varphi)$?
- When is the ideal $\operatorname{ker}(\varphi)$ defined by binomials?
- Can we find a Gröbner basis for $\operatorname{ker}(\varphi)$?

Goals

- What polynomials generate the ideal $\operatorname{ker}(\varphi)$?
- When is the ideal $\operatorname{ker}(\varphi)$ defined by binomials?
- Can we find a Gröbner basis for $\operatorname{ker}(\varphi)$?

Previous work:

- L.D. Garcia, M. Stillman, and B. Sturmfels. Algebraic geometry of Bayesian networks. J. Symbolic Comput., 39(3-4):331-355, 2005.
- D. Geiger, C. Meek, and B. Sturmfels. On the toric algebra of graphical models. Ann. Statist., 34(3):1463-1492, 2006.
- P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional distributions. Ann. Statist., 26(1):363-397, 1998.

A staged tree model

$$
\begin{gathered}
\Theta_{\mathcal{T}}:=\left\{\left(s_{0}, \ldots, s_{7}\right) \mid s_{0}+s_{1}=\right. \\
\left.s_{2}+s_{3}=s_{4}+s_{5}=s_{6}+s_{7}=1\right\} \\
=\Delta_{1} \times \Delta_{1} \times \Delta_{1} \times \Delta_{1} \\
\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \rightarrow \Delta_{7} \\
\left(s_{0}, \ldots, s_{7}\right) \mapsto\left(s_{0} s_{2} s_{4}, s_{0} s_{2} s_{5} s_{6}, \ldots\right. \\
\left.s_{1} s_{2}, s_{1} s_{3}\right)
\end{gathered}
$$

$\mathcal{M}=\operatorname{im}\left(\Psi_{\mathcal{T}}\right)$ is the vanishing of

$$
\begin{array}{cc}
p_{5} p_{6}-p_{2} p_{7}, & p_{3} p_{6}-p_{0} p_{7} \\
p_{4} p_{6}-p_{1} p_{7}, & p_{2} p_{4}-p_{1} p_{5} \\
p_{2} p_{3}-p_{0} p_{5}, & p_{1} p_{3}-p_{0} p_{4}
\end{array}
$$

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\operatorname{ker}(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

Combinatorics of trees

- Let \mathcal{T} be a tree. For $v \in V$, the level of v is the number of edges in the unique path from the root of \mathcal{T} to v.
- The staged tree \mathcal{T} is stratified if all its leaves have the same level and if every two vertices in the same stage have the same level.

Combinatorics of trees

- Let \mathcal{T} be a tree. For $v \in V$, the level of v is the number of edges in the unique path from the root of \mathcal{T} to v.
- The staged tree \mathcal{T} is stratified if all its leaves have the same level and if every two vertices in the same stage have the same level.
vo

Interpolating polynomials

- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_{v} the subtree of \mathcal{T} rooted at v.
- Let Λ_{v} be the set of v-to-leaf paths in \mathcal{T} and define

$$
t(v):=\sum_{\lambda \in \Lambda_{v}} \prod_{e \in E(\lambda)} \theta(e) .
$$

Interpolating polynomials

- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_{v} the subtree of \mathcal{T} rooted at v.
- Let Λ_{v} be the set of v-to-leaf paths in \mathcal{T} and define

$$
t(v):=\sum_{\lambda \in \Lambda_{v}} \prod_{e \in E(\lambda)} \theta(e) .
$$

- When v is the root of \mathcal{T}, the polynomial $t(v)$ is called the interpolating polynomial of \mathcal{T}.
- Two staged trees (\mathcal{T}, θ) and $\left(\mathcal{T}, \theta^{\prime}\right)$ with the same label set \mathcal{L} are polynomially equivalent if their interpolating polynomials are equal.

Interpolating polynomials

- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_{v} the subtree of \mathcal{T} rooted at v.
- Let Λ_{v} be the set of v-to-leaf paths in \mathcal{T} and define

$$
t(v):=\sum_{\lambda \in \Lambda_{v}} \prod_{e \in E(\lambda)} \theta(e) .
$$

- When v is the root of \mathcal{T}, the polynomial $t(v)$ is called the interpolating polynomial of \mathcal{T}.
- Two staged trees (\mathcal{T}, θ) and $\left(\mathcal{T}, \theta^{\prime}\right)$ with the same label set \mathcal{L} are polynomially equivalent if their interpolating polynomials are equal.
- C. Görgen, A. Bigatti, E. Riccomagno, and J. Q. Smith. Discovery of statistical equivalence classes using computer algebra. International Journal of Approximate Reasoning, 95:167-184, 2018.
- Let v, w be two vertices in the same stage with $\operatorname{ch}(v)=\left\{v_{0}, \ldots, v_{k}\right\}$ and $\operatorname{ch}(w)=\left\{w_{0}, \ldots, w_{k}\right\}$.
- After reindexing the elements in $\operatorname{ch}(w)$ we may assume that $\theta\left(v, v_{i}\right)=\theta\left(w, w_{i}\right)$ for all $i \in\{0, \ldots, k\}$.
- The vertices v, w satisfy condition (\star) if

$$
t\left(v_{i}\right) t\left(w_{j}\right)=t\left(w_{i}\right) t\left(v_{j}\right) \text { in } \mathbb{R}[\mathcal{L}], \text { for all } i \neq j \in\{0, \ldots, k\}
$$

- Let v, w be two vertices in the same stage with $\operatorname{ch}(v)=\left\{v_{0}, \ldots, v_{k}\right\}$ and $\operatorname{ch}(w)=\left\{w_{0}, \ldots, w_{k}\right\}$.
- After reindexing the elements in $\operatorname{ch}(w)$ we may assume that $\theta\left(v, v_{i}\right)=\theta\left(w, w_{i}\right)$ for all $i \in\{0, \ldots, k\}$.
- The vertices v, w satisfy condition (\star) if

$$
t\left(v_{i}\right) t\left(w_{j}\right)=t\left(w_{i}\right) t\left(v_{j}\right) \text { in } \mathbb{R}[\mathcal{L}], \text { for all } i \neq j \in\{0, \ldots, k\} .
$$

- The staged tree (\mathcal{T}, θ) is balanced if every pair of vertices in the same stage satisfy condition (\star).
- v_{1} and v_{2} satisfy condition (\star) since $t\left(v_{3}\right) t(\circ)=t\left(v_{4}\right) t(\circ)$.

- We say that two vertices $v, w \in V$ are in the same position if they are in the same stage and $t(v)=t(w)$.
- Lemma: Let (\mathcal{T}, θ) be a stratified staged tree. Suppose that every two vertices in \mathcal{T} that are in the same stage are also in the same position. Then (\mathcal{T}, θ) is balanced.

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\operatorname{ker}(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\operatorname{ker}(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4}
$$

- The balanced condition guarantees that $\operatorname{ker}(\varphi)$ is a binomial ideal.
- The stratified and balanced condition implies $\operatorname{ker}(\varphi)$ can constructed inductively in a finite number of steps using toric fiber products.

References

L. Ananiadi and E. Duarte. Gröbner bases for staged trees. https://arxiv.org/abs/1910.02721

围 . Duarte and C. Görgen. Equations defining probability tree models. Journal of Symbolic Computation, to appear, arXiv:1802.04511.

R J. Q. Smith and P. E. Anderson. Conditional independence and chain event graphs. Artificial Intelligence, 172(1):42-68, 2008.

Q J. Q. Smith, C. Görgen, and R. A. Collazo. Chain event graphs. preparation for Chapman \& Hall, 2017.
S. Sullivant. Toric fiber products. Journal of Algebra, 316(2):560-577, 2007.

Q S. Sullivant. Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018.

