Gröbner bases for staged trees

Eliana Duarte

Max-Planck-Institut für Mathematik in den Naturwissenschaften

MAX-PLANCK-GESELLSCHAFT

Collaborators

Christiane Görgen MPI MIS arXiv:1802.04511

Lamprini Ananiadi OVGU Magdeburg arXiv:1910.02721

From a Bayesian network to a staged tree

 $X_1 = \text{Environment: {benign, hostile}}$ $X_2 = \text{Activity: {high, low}}$ $X_3 = \text{Survival: {die, survive}}$ $X_4 = \text{Recovery: {full, partial}}$

Conditional independence statements:

 $X_1 \perp X_2$ and $(X_1, X_2) \perp X_4 | X_3$

From a Bayesian network to a staged tree

 $X_1 = \text{Environment: {benign, hostile}}$ $X_2 = \text{Activity: {high, low}}$ $X_3 = \text{Survival: {die, survive}}$ $X_4 = \text{Recovery: {full, partial}}$

Conditional independence statements:

$$X_1 \perp X_2$$
 and $(X_1, X_2) \perp X_4 | X_3$

Extra: If the environment is hostile then a cell gets damaged and might either die or survive. Whether a cell dies or survives does not depend on its activity.

$$P(X_3 = \text{die } | X_1 = \text{hostile}, X_2 = \text{high}) = P(X_3 = \text{die } | X_1 = \text{hostile}, X_2 = \text{low})$$

 $P(X_3 = \text{survive } | X_1 = \text{hostile}, X_2 = \text{high}) = P(X_3 = \text{survive } | X_1 = \text{hostile}, X_2 = \text{low})$

 $X_1 \perp X_2$

 $X_1 \perp X_2$

 $(X_1, X_2) \perp X_4 | X_3$

Extra

A staged tree

A staged tree model

$$\Theta_{\mathcal{T}} := \{ (s_0, \dots, s_7) \mid s_0 + s_1 = s_2 + s_3 = s_4 + s_5 = s_6 + s_7 = 1 \}$$
$$= \Delta_1 \times \Delta_1 \times \Delta_1 \times \Delta_1$$
$$\Psi_{\mathcal{T}} : \ \Theta_{\mathcal{T}} \to \Delta_7$$
$$(s_0, \dots, s_7) \mapsto (s_0 s_2 s_4, s_0 s_2 s_5 s_6, \dots, s_1 s_2, s_1 s_3)$$

 $\mathcal{M} = \operatorname{im}(\Psi_\mathcal{T})$ is the vanishing of

 $\begin{array}{ll} p_5p_6-p_2p_7, & p_3p_6-p_0p_7, \\ p_4p_6-p_1p_7, & p_2p_4-p_1p_5, \\ p_2p_3-p_0p_5, & p_1p_3-p_0p_4 \end{array}$

• Staged trees can be used to encode conditional independence statements.

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.
- The outcome space is not necessarily a cartesian product.

- Staged trees can be used to encode conditional independence statements.
- They can also capture context specific information.
- The outcome space is not necessarily a cartesian product.
- J.Q. Smith and P.E. Anderson. Conditional independence and chain event graphs. *Artificial Intelligence*, 172(1):42-68,2008.
- J.Q. Smith, C. Görgen, and R.A. Collazo. Chain event graphs. CRC Press, 2018.

Definitions and Notation

- Let $\mathcal{T} = (V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta : E \to \mathcal{L}$.
- $\bullet \ E(v)=\{(v,u)\ |\ u\in \mathrm{ch}(v)\}$

 \square

- Let $\mathcal{T} = (V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta : E \to \mathcal{L}$.
- $E(v) = \{(v, u) \mid u \in ch(v)\}$
- A tree \mathcal{T} with a labelling $\theta: E \to \mathcal{L}$ is a *staged tree* if:
 - (1) for each $v \in V$, $|\theta_v| = |E(v)|$, and
 - (2) for any two vertices $v,w\in V$ the sets θ_v,θ_w are either equal or disjoint.
- v, w ∈ V are equivalent if and only if θ_v = θ_w. The partition induced by this equivalence relation on V is the set of stages.

 \square

- Let $\mathcal{T} = (V, E)$ be a directed rooted tree.
- Given a set \mathcal{L} of labels, to each $e \in E$ we associate a label from \mathcal{L} via the rule $\theta : E \to \mathcal{L}$.
- $E(v) = \{(v, u) \mid u \in ch(v)\}$
- A tree \mathcal{T} with a labelling $\theta: E \to \mathcal{L}$ is a staged tree if:
 - (1) for each $v \in V$, $|\theta_v| = |E(v)|$, and
 - (2) for any two vertices $v, w \in V$ the sets θ_v, θ_w are either equal or disjoint.
- v, w ∈ V are equivalent if and only if θ_v = θ_w. The partition induced by this equivalence relation on V is the set of stages.
- Example: $\mathcal{L} = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$

- $\Lambda = \text{set of root-to-leaf paths in } \mathcal{T}.$
- Set $\overline{\theta} = (\theta(e) \mid \theta(e) \in \mathcal{L})$ and define the parameter space,

$$\Theta_{\mathcal{T}} := \{ \overline{\theta} \mid \theta(e) \in (0,1) \text{ and for all } v \in V, \sum_{e \in E(v)} \theta(e) = 1 \}.$$

- Let \mathcal{T} be a staged tree with labelling θ .
- $\Lambda = \text{set of root-to-leaf paths in } \mathcal{T}.$
- Set $\overline{\theta} = (\theta(e) \mid \theta(e) \in \mathcal{L})$ and define the parameter space,

$$\Theta_{\mathcal{T}} := \{ \, \overline{\theta} \ | \ \theta(e) \in (0,1) \text{ and for all } v \in V, \ \sum_{e \in E(v)} \theta(e) = 1 \, \}.$$

• A staged tree model $\mathcal{M}_{(\mathcal{T},\theta)}$ is the image of the map $\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \to \Delta^{\circ}_{|\Lambda|-1}$ defined by

$$\overline{\theta} \mapsto p_{\overline{\theta}} = \left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}$$

- Parametric: A staged tree model $\mathcal{M}_{(\mathcal{T},\theta)}$ is the image of the map $\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \to \Delta^{\circ}_{|\Lambda|-1}$ defined by

$$\overline{\theta} \mapsto p_{\overline{\theta}} = \left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}$$

• $\mathbb{R}[p]_{\mathcal{T}} := \mathbb{R}[p_{\lambda} \mid \lambda \in \Lambda] \text{ and } \mathbb{R}[\Theta_{\mathcal{T}}] := \mathbb{R}[\mathcal{L}]/\langle \sum -1 \rangle.$

- \square
- Parametric: A staged tree model $\mathcal{M}_{(\mathcal{T},\theta)}$ is the image of the map $\Psi_{\mathcal{T}}: \Theta_{\mathcal{T}} \to \Delta^{\circ}_{|\Lambda|-1}$ defined by

$$\overline{\theta} \mapsto p_{\overline{\theta}} = \left(\prod_{e \in E(\lambda)} \theta(e)\right)_{\lambda \in \Lambda}$$

- $\mathbb{R}[p]_{\mathcal{T}} := \mathbb{R}[p_{\lambda} \mid \lambda \in \Lambda] \text{ and } \mathbb{R}[\Theta_{\mathcal{T}}] := \mathbb{R}[\mathcal{L}]/\langle \sum -1 \rangle.$
- Implicit: Consider the map of polynomial rings $\varphi : \mathbb{R}[p]_{\mathcal{T}} \to \mathbb{R}[\Theta_{\mathcal{T}}]$ defined by

$$p_{\lambda} \mapsto \prod_{e \in E(\lambda)} \theta(e)$$
 (1)

 $\mathcal{M}_{(\mathcal{T},\theta)}$ is the zero set of $\ker(\varphi)$ in $\Delta_{|\Lambda|-1}.$

Goals

- What polynomials generate the ideal $\ker(\varphi)?$
- When is the ideal $\ker(\varphi)$ defined by binomials?
- Can we find a Gröbner basis for $ker(\varphi)$?

Goals

- What polynomials generate the ideal $\ker(\varphi)?$
- When is the ideal $\ker(\varphi)$ defined by binomials?
- Can we find a Gröbner basis for $\ker(\varphi)$?

Previous work:

- L.D. Garcia, M. Stillman, and B. Sturmfels. Algebraic geometry of Bayesian networks. *J. Symbolic Comput.*, 39(3-4):331–355, 2005.
- D. Geiger, C. Meek, and B. Sturmfels. On the toric algebra of graphical models. *Ann. Statist.*, 34(3):1463–1492, 2006.
- P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional distributions. *Ann. Statist.*, 26(1):363-397, 1998.

A staged tree model

$$\Theta_{\mathcal{T}} := \{ (s_0, \dots, s_7) \mid s_0 + s_1 = s_2 + s_3 = s_4 + s_5 = s_6 + s_7 = 1 \}$$
$$= \Delta_1 \times \Delta_1 \times \Delta_1 \times \Delta_1$$
$$\Psi_{\mathcal{T}} : \ \Theta_{\mathcal{T}} \to \Delta_7$$
$$(s_0, \dots, s_7) \mapsto (s_0 s_2 s_4, s_0 s_2 s_5 s_6, \dots, s_1 s_2, s_1 s_3)$$

 $\mathcal{M} = \operatorname{im}(\Psi_\mathcal{T})$ is the vanishing of

 $\begin{array}{ll} p_5p_6-p_2p_7, & p_3p_6-p_0p_7, \\ p_4p_6-p_1p_7, & p_2p_4-p_1p_5, \\ p_2p_3-p_0p_5, & p_1p_3-p_0p_4 \end{array}$

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\ker(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

- Let T be a tree. For v ∈ V, the *level* of v is the number of edges in the unique path from the root of T to v.
- The staged tree \mathcal{T} is *stratified* if all its leaves have the same level and if every two vertices in the same stage have the same level.

- Let T be a tree. For v ∈ V, the *level* of v is the number of edges in the unique path from the root of T to v.
- The staged tree \mathcal{T} is *stratified* if all its leaves have the same level and if every two vertices in the same stage have the same level.

Interpolating polynomials

- \square
- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_v the subtree of \mathcal{T} rooted at v.
- Let Λ_v be the set of v-to-leaf paths in $\mathcal T$ and define

$$t(v) := \sum_{\lambda \in \Lambda_v} \prod_{e \in E(\lambda)} \theta(e).$$

- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_v the subtree of \mathcal{T} rooted at v.
- Let Λ_v be the set of v-to-leaf paths in $\mathcal T$ and define

$$t(v) := \sum_{\lambda \in \Lambda_v} \prod_{e \in E(\lambda)} \theta(e).$$

- When v is the root of \mathcal{T} , the polynomial t(v) is called the *interpolating polynomial* of \mathcal{T} .
- Two staged trees (\mathcal{T}, θ) and (\mathcal{T}, θ') with the same label set \mathcal{L} are *polynomially equivalent* if their interpolating polynomials are equal.

- Let (\mathcal{T}, θ) be a staged tree, $v \in V$, and \mathcal{T}_v the subtree of \mathcal{T} rooted at v.
- Let Λ_v be the set of v-to-leaf paths in $\mathcal T$ and define

$$t(v) := \sum_{\lambda \in \Lambda_v} \prod_{e \in E(\lambda)} \theta(e).$$

- When v is the root of \mathcal{T} , the polynomial t(v) is called the *interpolating polynomial* of \mathcal{T} .
- Two staged trees (\mathcal{T}, θ) and (\mathcal{T}, θ') with the same label set \mathcal{L} are *polynomially equivalent* if their interpolating polynomials are equal.
- C. Görgen, A. Bigatti, E. Riccomagno, and J. Q. Smith. Discovery of statistical equivalence classes using computer algebra. *International Journal of Approximate Reasoning*, 95:167–184, 2018.

- Let v, w be two vertices in the same stage with $ch(v) = \{v_0, \dots, v_k\}$ and $ch(w) = \{w_0, \dots, w_k\}$.
- After reindexing the elements in ch(w) we may assume that $\theta(v, v_i) = \theta(w, w_i)$ for all $i \in \{0, \dots, k\}$.
- The vertices v,w satisfy condition (\star) if

 $t(v_i)t(w_j) = t(w_i)t(v_j)$ in $\mathbb{R}[\mathcal{L}]$, for all $i \neq j \in \{0, \dots, k\}$.

- Let v, w be two vertices in the same stage with $ch(v) = \{v_0, \dots, v_k\}$ and $ch(w) = \{w_0, \dots, w_k\}$.
- After reindexing the elements in ch(w) we may assume that $\theta(v, v_i) = \theta(w, w_i)$ for all $i \in \{0, \dots, k\}$.
- The vertices v, w satisfy condition (\star) if

 $t(v_i)t(w_j) = t(w_i)t(v_j)$ in $\mathbb{R}[\mathcal{L}]$, for all $i \neq j \in \{0, \dots, k\}$.

- The staged tree (*T*, θ) is *balanced* if every pair of vertices in the same stage satisfy condition (*).
- v_1 and v_2 satisfy condition (\star) since $t(v_3)t(\circ) = t(v_4)t(\circ)$.

- We say that two vertices v, w ∈ V are in the same position if they are in the same stage and t(v) = t(w).
- Lemma: Let (\mathcal{T}, θ) be a stratified staged tree. Suppose that every two vertices in \mathcal{T} that are in the same stage are also in the same position. Then (\mathcal{T}, θ) is balanced.

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\ker(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

Theorem[Ananiadi, D., Görgen]:

If (\mathcal{T}, θ) is a balanced and stratified staged tree then $\ker(\varphi)$ is generated by a Gröbner basis of quadratic binomials with squarefree initial ideal.

$$X_1 \to X_2 \to X_3 \to X_4$$

- The balanced condition guarantees that $\ker(\varphi)$ is a binomial ideal.
- The stratified and balanced condition implies $\ker(\varphi)$ can constructed inductively in a finite number of steps using toric fiber products.

References

- L. Ananiadi and E. Duarte. Gröbner bases for staged trees. https://arxiv.org/abs/1910.02721
- . Duarte and C. Görgen. Equations defining probability tree models. Journal of Symbolic Computation, to appear, arXiv:1802.04511.
- J. Q. Smith and P. E. Anderson. Conditional independence and chain event graphs. Artificial Intelligence, 172(1):42 - 68, 2008.
- 📎 J. Q. Smith, C. Görgen, and R. A. Collazo. Chain event graphs. preparation for Chapman & Hall, 2017.
 - S. Sullivant. Toric fiber products. Journal of Algebra, 316(2):560-577, 2007.

S. Sullivant. Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018.

