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Causal Discovery from Observational Studies

Given: Multivariate i.i.d. sample: Y (1), . . .Y (n)

Goal: Estimate underlying causal relationships. What is possible?


Y

(1)
1 . . . Y

(1)
p

Y
(2)
1 . . . Y

(2)
p

... . . .
...

Y
(n)
1 . . . Y

(n)
p

 =⇒

PKC

JNKPIP2

PLCg PIP3 Akt P38

Raf

PKA

Mek

Erk

PCK = f ( PIP2, PLCg, ε)

I General, Gaussian, discrete: Markov equivalence
I Unique causal graph under special assumptions such as:

I Non-linear functional relationships with additive noise
I LiNGAM: Linear functional relationships with non-Gaussian errors

(Shimizu, Hoyer, Hyvärinen, Kerminen, . . . )
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Causal Graphs

Fussball

Weißbier BMI

Directed Graph G = (V ,E→) :

I Nodes correspond to observed variables.

I Edges represent direct causal effects.

Terminology:

I If v → u, then v is a parent of the child u.

I If v → · · · → u, the v is an ancestor of the descendant u.

I Ayclic digraph = directed acyclic graph = DAG
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LiNGAM (Linear Non-Gaussian Acyclic Model)

I Consider p-variate observation Y = (Yv )v∈V , so |V | = p.

I For convenience, assume Y centered.

I Linear system given by a DAG:

Yv =
∑

u∈pa(v)

βvuYu + εv , v ∈ V ,

where the error terms εv are independent and non-Gaussian.

Example

Y1 Y2 Y3

Y1 = ε1,

Y2 = β21Y1 + ε2,

Y3 = β32Y2 + ε3.
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Non-Gaussianity and Independent Component Analysis

I Let ε be an Rp-valued random vector with independent components:

ε1 ⊥⊥ ε2 ⊥⊥ . . . ⊥⊥ εp.

I ICA Problem (Independent Component Analysis):

Given an invertible linear transformation Y = A ε, can we recover A?

. . . up to permutation and scaling of columns?

I If at least two εj are Gaussian then such recovery is impossible.

Theorem

If all (or all but one) εj are non-Gaussian then A can be recovered (up to
permutation and scaling).

I Practical implementations estimate W = A−1 by maximizing
“non-Gaussianity” of WY .
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ICA-LiNGAM (Shimizu et al., 2006)

I LiNGAM:
Y = B Y + ε ⇐⇒ Y = (I − B)−1ε

with B supported over a DAG.

I ICA yields identifiability of B:

1. Find an unmixing/separating matrix W , which has to equal
I − B up to permutation and scaling of rows.

2. Permute rows of W to have no zero diagonal elements
(resolves “up to permutation” as B corresponds to DAG).

3. Scale diagonal elements to unity
(resolves “up to scaling”).

I Practice: feasible method but issues (e.g., Ŵ has all entries nonzero)
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Direct-LiNGAM (Shimizu et al., 2011)

Main Idea:

I Regression residuals are linear combination of the independent errors.

I Source node is characterized by independence from residuals.

Theorem (Darmois-Skitovitch)

Let ε1, . . . , εp be independent non-degenerate random variables. If∑
j ajεj ⊥⊥

∑
j bjεj , then

ajbj 6= 0 =⇒ εj ∼ Gaussian.
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Direct-LiNGAM (Shimizu et al., 2011)

Example

Y1 Y2 Y3
Y1 = ε1,

Y2 = β21Y1 + ε2,

Y3 = β32Y2 + ε3.

Residuals adjusting for Y1 satisfy:

Y2.1 := Y2 − E(Y2 | Y1) = Y2 − β21Y1 = ε2,

Y3.1 := Y3 − E(Y3 | Y1) = Y3 − β32β21Y1 = β32Y2.1 + ε3.

Observe that Y1 ⊥⊥ (Y2.1,Y3.1) and

Y2.1 Y3.1
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Direct-LiNGAM Recursion

Let Θ(z) = (r1, r2, . . . , rz) be the set of ordered nodes after step z .

Algorithm 1 Select an ordering

1: Θ(0) = ∅; Y (0) = Y
2: for z = 0, . . . , p − 1 do
3: Identify a source r /∈ Θ(z) using Y (z)

4: for v /∈ Θ(z) ∪ {r} do

5: Y
(z+1)
v = Y

(z)
v − β̂vrY (z)

r

6: end for
7: Update Θ(z+1) = Append(Θ(z), r).
8: end for
9: return Θ(p) as an ordering

10: Prune ancestors which are not parents

Θ(0) = ∅

(a) “True” Graph of Y (z)

1

2 3

4

(b) Estimated Graph

1

2 3

4
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Two Problems

1. High-dimensional DAGs

I Allow for #variables = p > n = # observations.

I Assuming sparsity.

I Existing methods of Shimizu et al. (2006, 2011) and Hyvärinen and
Smith (2013) not applicable.

2. Latent variables (Bow-free Acyclic Path Diagrams)

I Allow for certain types of unobserved confounding

I Existing methods involve difficult overcomplete ICA
computations/require prior knowledge (Hoyer et al., 2008; Shimizu and
Bollen, 2014) or may return inconclusive results (Entner and Hoyer,
2010; Tashiro et al., 2014)
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Causal Discovery in High-Dimensional Settings
https://arxiv.org/abs/1803.11273



Direct-LiNGAM Approach

I Problem in a high-dimensional setting:

I Adjusting by all prior variables propagates error proportional to p.

I Residuals are uninformative/zero if p > n.

I Solution: Only adjust by smallest set necessary.

I Need parameter/statistic to determine causal direction while adjusting
for possible confounding.

I Selecting a source should be computationally inexpensive.
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Help from Non-Gaussianity? Looking at 3rd Moments. . .

Consider the polynomial: τp→c = E(Y 2
p Yc)E(Y 2

p )− E(Y 3
p )E(YpYc)

Causal graph:

Y1 Y2

E(Y1Y2)

E(Y 2
1 )

=
E [ε1(β21ε1 + ε2)]

E(ε2
1)

= β21

E(Y 2
1 Y2)

E(Y 3
1 )

=
E
[
ε2

1(β21ε1 + ε2)
]

E
(
ε3

1

) = β21

It follows that τ1→2 ≡ 0.

Causal graph:

Y1 Y2

E(Y1Y2)

E(Y 2
1 )

=
β12E(ε2

2)

β2
12E(ε2

2) + E(ε2
1)

E(Y 2
1 Y2)

E(Y 3
1 )

=
β2

12E(ε3
2)

β3
12E(ε3

2) + E(ε3
1)

Now, τ1→2 6≡ 0.

( 6= 0 generically, in particular, 3rd
moments need to be non-Gaussian).
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Moment Relation

For u 6= v , C ⊆ V \ {u, v}, and residual Yv .C = Yv − E(Yv | YC ):

τ
(K)
v .C→u := E

(
Y K−1
v .C Yu

)
E
(
Y 2
v .C

)
− E

(
Y K
v .C

)
E (Yv .CYu)

C B

v u

=⇒
C B

v.C u

(i) If u 6∈ pa(v), then

min
C
|τ (K)
v .C→u| = 0.

Achieved for C = pa(v). If |pa(v)| ≤ J, testing |C | ≤ J enough.

(ii) If u ∈ pa(v), then generically over sets C ⊆ V \ (de(v) ∪ {v , u})

min
C
|τ (K)
v .C→u| > 0.
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Using in Direct-LiNGAM recursion

I Given a set of already ‘ordered nodes’.

I Find source v in subgraph of ‘unordered nodes’ by

max
u

min
C
|τ (K)
v .C→u| = 0.

where u ∈ ‘unordered’ and |C | ≤ J subset of ‘ordered’.

I Add v to ‘ordered nodes’.

I In practice take v with smallest ‘max-min’.
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Modified Direct-LiNGAM

I Concentration inequalities for sample moments give:

Under ‘strong parental faithfulness’, for log-concave errors
and DAG of in-degree J, modified Direct-LiNGAM is consistent if

log(p)J5/2

n1/(2K)
→ 0.

Parental faithfulness: Total effect between parent and child does not
vanish when adjusting on non-descendants.

I Computation:
- Testing restricted subsets becomes computationally demanding:

|{C : C ⊆ V1, |C | = J}| = O(|V1|J)

- Pruning:
Record when moment relations indicate that node is ancestor but not
parent of v ∈ ‘unordered’.
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Illustration
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Figure: High dimensional consistency for topological ordering with n = 3/4p
15 / 25



Causal Discovery with Unobserved Confounding
. . . 2020



Capturing Unobserved Confounding

1 2

L

Figure: Children of a common unobserved parent

I Mixed graph G = (V ,E→,E↔).

I Non-Gaussian Linear Model:

Yv =
∑

u∈pa(v)

βvuYu + εv , v ∈ V ,

with E(εvεu) = ωvu 6= 0 only if u = v or u ↔ v ∈ E↔ (siblings).

I Continue to assume that E→ is acyclic.

I In which settings might we be able to infer the underlying graph G?
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Existing Work

Gaussian or conditional independence based methods:

I Constraint testing1 and greedy methods2 for maximal ancestral graphs

I Greedy search3 for bow-free acyclic path diagrams (BAPs)

Explicitly non-Gaussian:

I Overcomplete ICA4

I Bayesian specification5

I Conservative Direct-LiNGAM approach6

I ParceLiNGAM7 (still use independence of residuals from regression)

1Richardson and Spirtes (2002),Colombo et al. (2012),Claassen et al. (2013)
2Triantafillou and Tsamardinos (2016)
3Nowzohour et al. (2017)
4Hoyer et al. (2008)
5Shimizu and Bollen (2014)
6Entner and Hoyer (2010)
7Tashiro et al. (2014)
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Ancestral Graphs

I ParceLiNGAM applies Direct-LiNGAM (locating sources) and its
“dual” (locating sinks) to all subsets of variables.

I Amounts to checks of

Yv .C = Yv − E(Yv | YC ) ⊥⊥ YC , v ∈ V , C ⊆ V \ {v}.

I ParceLiNGAM is sound: returns a partial ordering that extends to a
topological ordering of the mixed graph G .

I Example:

1

2

3

4

Theorem

ParceLiNGAM recovers a topological ordering of G iff G ancestral.
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What’s special about Ancestral Graphs?

I A graph is ancestral if it does not contain semi-directed cycles of form

v↔w→ · · · → v .

Theorem

(i) The graph G is ancestral if and only if

E(Yv | Ypa(v)) =
∑

c∈pa(v)

βvcYc for all nodes v .

(ii) The graph G is ancestral if and only if[
εv = Yv −

∑
u∈pa(v)

βvuYu

]
⊥⊥
[
Ypa(v) = f (εan(v))

]
for all nodes v .

I Regression residual Yv − E(Yv | Ypa(v)) = εv independent of Ypa(v).
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Bow-Free Acyclic Graphs

I Bow-free: At most one edge between any pair of nodes

1 2 3 1 2 3

I Complications exemplified (top right):

E(Y3|Y2) =
β32(β2

21ω11 + ω22) + β21ω13

β2
12ω11 + ω22

6= β32[
ε3 = Y2 − β32Y3

]
6⊥⊥
[
Y2 = ε2 + β21ε1

]
I Bow-free acyclic graphs can be recovered :

i) (βvu) generically identifiable from Var(Y ).

In fact, each βv ,pa(v) identifiable from Var(Yan(v)) and E(Yv | Yan(v)).

ii) εv ⊥⊥ εpa(v).
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Algorithm in an Example

1 2 3 4 1 2 3 4

(a) First test independence of regression residuals: Yv .C ⊥⊥ YC

I Only Y2.1 ⊥⊥ Y1: parent/ancestor relation 1→ 2 and β21;
I Adjust Y2 to Ȳ2 = Y2 − β21Y1 = ε2.

(b) Test again with adjusted observations and estimates of βvu:
I Discovery of 2→ 3 and β32.

Form Ȳ3 = Y3 − β32Y2 = ε3, and find Ȳ3 ⊥⊥ Ȳ2 = ε2;
I Also, 1 6∈ pa(3) as even after correct adjustment we have ε1 6⊥⊥ ε3.

(c) Repeat:
I Infer 2→ 4 and 3→ 4, so discover pa(4) ⊂ {2, 3} and
{2, 3} ∩ sib(4) = ∅. Discover 1 6∈ pa(4).

(d) Prune → edges accounting for dependence induced by ↔.
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Simulations: Maximal Ancestral Graphs
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Figure: 1000 Random MAGs with p = 5. Solid lines are log-normal errors; dotted
lines are Gaussian errors.
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Simulations: BAPs
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Figure: 1000 Random BAPs with p = 5. Solid lines are log-normal errors; dotted
lines are Gaussian errors.
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Data Example: Ecology Data from Grace et al. (2016)

Pl Prod Pl Bio Pl Shade Pl Rich

St Prod St Bio St Rich

Pl Suit

(a) BAP representation of plot specific model from Grace et al. (2016).

Pl Prod Pl Bio Pl Shade Pl Rich

St Prod St Bio St Rich

Pl Suit

(b) Discovered model matches 16 out of 28 edges. Probability of 16 or more
edges by random guessing is .002.
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To the organizers, a big:

THANK YOU!
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