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Practical motivation

The problem to be solved

I Given data and some known/assumed conditional (CI) independence
relations find a good DAG (Bayesian network).

I In a sense, this is easy if we view DAG learning as a constrained
optimisation problem.

I We just tell the solver to reject any DAG not satisfying the given CI
relations, and keep searching.

I But this sort of ‘generate-and-test’ approach is woefully inefficient.

I We need some theory to help us do better . . .
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Practical motivation

Polyhedral geometry for DAGs and Markov equivalence
classes of DAGs

I We start by considering DAG learning without any CI constraints.
I And examine the geometry of a polytope that is central to integer

programming (IP) approaches to solving this problem.
I A key step in IP is to solve (in polynomial time) the linear relaxation of

the original problem (where we remove all integrality constraints).
I The solution to the linear relaxation is an optimal vertex of the

polytope defined by the linear constraints of the problem.

I This involves encoding DAGs as vectors.

I We also consider an approach where each Markov equivalence class of
DAGs is encoded as a single vector.
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Encoding DAGs as zero-one vectors

Encoding DAGs as zero-one vectors

I To use an integer programming approach to learning DAGs from data
it is necessary to encode each DAG as a vector.

I For DAG learning the most useful encoding is via family variables.

I This digraph: i

j

k is this point in R12:

xi←{} xi←{j} xi←{k} xi←{j ,k}
0 1 0 0

xj←{} xj←{i} xj←{k} xj←{i ,k}
1 0 0 0

xk←{} xk←{i} xk←{j} xk←{i ,j}

0 0 0 1

Most objectives (BDeu, BIC, etc) are linear functions of family variables.
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Encoding DAGs as zero-one vectors

Altering the encoding

I Clearly each vertex has exactly one parent set in any DAG, so we can
drop the family variables indicating an empty parent set.

I If we have n nodes we end up with n(2n−1 − 1) family variables.

I Assume this encoding from now on.

i

j

k

xi←{j} xi←{k} xi←{j ,k}
1 0 0

xj←{i} xj←{k} xj←{i ,k}
0 0 0

xk←{i} xk←{j} xk←{i ,j}

0 0 1
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Encoding DAGs as zero-one vectors

The family-variable polytope

I For some fixed set of n nodes consider the set of all DAGs with those
nodes.

I Each DAG corresponds to a 0-1 vector (indexed by the family
variables).

I The convex hull of all these vectors is the family-variable polytope.

I This polytope has dimension n(2n−1 − 1) and so our encoding is
full-dimensional.
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Encoding DAGs as zero-one vectors

Facets of the family-variable polytope

I Like any polytope, the family-variable polytope can also be defined
via its facets.

I A face of a polytope P ⊆ Rm is a set of the form

F := P ∩ {x ∈ Rm | cx = δ},

where cx ≤ δ is a valid inequality for P.

I A face is proper if it is non-empty and properly contained in P.

I An inclusion-wise maximal proper face of P is called a facet.
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Encoding DAGs as zero-one vectors

Family-variable polytope for n = 4

I When n = 4 there are 543 DAGs.

I There are 4× (23 − 1) = 28 family variables.

I And the family-variable polytope has 135 facets.

I 28 of the facets are defined by lower bounds on the family variables

I These lower bound facets are defined by facet-defining inequalities
like this: xi←J ≥ 0.
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Encoding DAGs as zero-one vectors

Some facet-defining inequalities

I Here are some other facet-defining inequalities for n = 4, where we
assume the nodes of the DAGs are {a, b, c , d}, and write e.g. ab for
{a, b}.

Even cyclic digraphs have to satisfy inequalities like this one:

xa←b + xa←c + xa←d + xa←bc + xa←bd + xa←cd + xa←bcd ≤ 1

At least one of a, b and c must have no parents in {a, b, c}:

xa←b + xa←c + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←c + xb←ac + xb←ad + xb←cd + xb←acd

+xc←a + xc←b + xc←ab + xc←ad + xc←bd + xc←abd ≤ 2
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Encoding DAGs as zero-one vectors

Some more facet-defining inequalities

xa←b + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←ac + xb←ad + xb←cd + xb←acd

+xc←ad + xc←bd + xc←abd

+xd←ac + xd←bc + xd←abc ≤ 2

xa←cd + xa←bcd

+xb←c + xb←ac + xb←cd + xb←acd

+xc←b + xc←d + xc←ab + xc←ad + xc←bd + 2xc←abd

+xd←a + xd←b + xd←c + xd←ab + 2xd←ac + xd←bc + 2xd←abc ≤ 3
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Encoding DAGs as zero-one vectors

Empty and complete DAGs

I Recall: 28 of the facets are defined by lower bounds on the family
variables: xi←J ≥ 0.

I The vertex corresponding to the empty graph (the zero vector) is the
vertex at the intersection of these 28 facets (and lies on none of the
other 107 facets).

I A complete DAG, in contrast, lies on many facets.
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Encoding DAGs as zero-one vectors

Score equivalence

I Let G ∼ H denote that DAGs G and H are Markov equivalent. Let
x(G ) and x(H) be their family-variable encodings.

I A vector c is called a score-equivalent objective if whenever G ∼ H
then cx(G ) = cx(H).

I We call a face score-equivalent if it is defined by a valid inequality
cx ≤ δ where c is a score-equivalent objective.

Theorem[CHS16]. If S is a facet of the family-variable polytope, the
following conditions are equivalent:

1. S is closed under Markov equivalence.

2. S contains the whole equivalence class of complete graphs.

3. S is score equivalent.
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Encoding MECs as zero-one vectors

Encoding Markov equivalence classes of DAGs as zero-one
vectors

I If we want to encode each Markov equivalence classes of DAGs as a
zero-one vector then we can use the characteristic imset encoding
[SHL10].

I For any S ⊆ N, |S | ≥ 2, cG (S) = 1 iff there is a vertex a ∈ S , such
that all parents of a (in G ) are also in S .

I Fundamental fact: G and H are Markov equivalent iff cG = cH .

i

j

k

c(ij) c(ik) c(jk) c(ijk)

1 1 1 1
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Encoding MECs as zero-one vectors

A linear projection between the two representations

c(S) =
∑
a∈S

∑
B : S\{a}⊆B⊆N\{a}

xa←B for any S ⊆ N, |S | ≥ 2.
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Encoding MECs as zero-one vectors

Characteristic imset polytope

I The characteristic imset polytope is the convex hull of all
characteristic imset vectors.

I It has dimension 2n − n − 1.

I The characteristic imset polytope is the image of the family-variable
polytope by the linear map on the preceding slide.

I When n = 4, the characteristic imset polytope is of dimension 11, has
185 vertices and 154 facets.

I So it has 358 fewer vertices but 19 more facets than the family
variable polytope for n = 4.
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Matroids

Matroids define facets

This score-equivalent facet-defining inequality for the family-variable
polytope:

xa←b + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←ac + xb←ad + xb←cd + xb←acd

+xc←ad + xc←bd + xc←abd

+xd←ac + xd←bc + xd←abc ≤ 2

corresponds to this facet for the characteristic imset polytope:

c(abc) + c(abd) + c(cd)− c(abcd) ≤ 2

I And both correspond to a matroid with {a, b, c , d} as the ground set
and this set of circuits: {abc, abd , cd}.

I Every connected matroid generates a score-equivalent facet for both
the family-variable and characteristic imset polytope [Stu15].
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Matroids

A (graphical) matroid

d

c

a b
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Matroids

A (graphical) matroid

d

c

a b

I Circuits (minimal dependent sets) are C = {abc, abd , cd}
I Bases (maximal independent sets) are B = {ab, ac, ad , bc, bd}
I Rank is 2

I Matroid is connected: every pair of elements in some circuit.

Not all matroids have a graphical representation!
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Decomposable models

Decomposable models

I If we restrict ourselves to decomposable models and encode using
characteristic imsets, we get the chordal graph polytope.

I In the case of decomposable models we have cG (S) = 1 iff S is a
complete set in the chordal graph.

I There is a conjecture [SC17] that the set of facets of the chordal
graph polytope (for node set N) is in one-one correspondence with
the set of clutters of subsets of N containing at least one singleton
(plus the lower bound c(N) ≥ 0).

I True up to n = 5 (where this polytope has 822 vertices and 682
facets).

I The complete graph (saturated model) lies on all facets except the
one defined by c(N) ≥ 0.
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Decomposable models

Example clutter inequalities

I From clutter L = {{a, b, c}, {d}} we get this facet-defining inequality

c(abc) ≤ c(abcd)

. (monotonicity)

I For clutter L = {{a, b}, {a, c}, {b, c}, {d}} we get this facet-defining
inequality

c(abd)+c(acd)+c(bcd)−2·c(abcd) ≤ c(ab)+c(ac)+c(bc)−2·c(abc)

(generalised monotonicity)
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Decomposable models

Clutter inequalities and junction trees

I If L is a clutter (containing at least one singleton {a}) then L↑
denotes the filter of all supersets of members of L.

I Let G be a chordal graph and let C1, . . .Cm be an ordering of its
(maximal) cliques satisfying the running intersection property where
a ∈ C1. Let S2, . . .Sm be the separators.

I Then the clutter inequality for L ‘says’:

m∑
j=1

δ(Cj ∈ L↑) −
m∑
j=2

δ(Sj ∈ L↑) ≥ 1

⇔ δ(C1 ∈ L↑) +
m∑
j=2

δ(Cj ∈ L↑)− δ(Sj ∈ L↑) ≥ 1
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Decomposable models

Incomplete graphs and clutters

I If a chordal graph is not complete then there is a non-empty set of
clutter inequality facets that it does not lie on.

I For example, this chordal graph:

a

b c

d

I where C1 = {a, b, c}, C2 = {b, c , d} and S2 = {b, c}
I does not lie on the facet defined by this clutter L = {{a}, {b, c , d}}.
I (If we removed the edge between, say, b and d then the resulting

graph would lie on the facet.)
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Conditional independence

What to do to (facet-defining) inequalities when CI
constraints are given?

I Given CI constraints, we can

1. Require that solutions lie on certain facets, and/or
2. Remove certain facet-defining inequalities, and/or
3. Tighten certain facet-defining inequalities.

I A more ambitious approach (not done here) would be to characterise
the polytope that arises from the convex hull of all DAGs (or MECs)
satisfying the given CI relations.
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Conditional independence

Enforcing tight lower bounds

I Clearly if A ⊥ B|S is required and a ∈ A and b ∈ B then we set e.g.
xa←bc = 0.

I If A ⊥ B|S is required and a ∈ A, b ∈ B and c ∈ S then we set e.g.
xc←ab = 0.

I So we end up with a lower-dimensional polytope by requiring that
solutions lie on certain facets.
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Conditional independence

Disregarding redundant inequalities

I If we have a ⊥ b and a ⊥ c and tighten the relevant lower bounds
then this inequality:

xa←b + xa←c + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←c + xb←ac + xb←ad + xb←cd + xb←acd

+xc←a + xc←b + xc←ab + xc←ad + xc←bd + xc←abd ≤ 2

I will always be satisfied (due to other inequalities) and so there is no
put adding it.

I (Typically such inequalities are added as cutting planes so are
disregarded ‘automatically’.)
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Conditional independence

Tightening (formerly) facet-defining inequalities

Inequalities like this are called cluster constraints [JSGM10]:

xa←b + xa←c + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←c + xb←ac + xb←ad + xb←cd + xb←acd

+xc←a + xc←b + xc←ab + xc←ad + xc←bd + xc←abd ≤ 2

I This inequality corresponds to the (rank 1) matroid with these
circuits: {ab, ac, bc}.

I If a DAG lies on the facet (the LHS=2) then one of {a, b, c} is a
common ancestor of the other two.

I So if it is required that, say, a ⊥ b then we can tighten this
facet-defining inequality to · · · ≤ 1.
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Conditional independence

Conditional independence constraints for chordal graphs

I If chordal graph G satisfies a ⊥ b|S , and
I L is a clutter where

1. {a} ∈ L
2. S 6∈ L↑

3. {b} ∪ S ∈ L↑

I then cG does not lie on the facet defined by L.

I So if we require that a ⊥ b|S , then we can tighten the relevant clutter
inequalities.
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Conditional independence

Conclusions

I As we add conditional independence constraints the polytope
(family-variable or characteristic imset) shrinks towards the vertex
that is the empty graph.

I But clearly a lot more work to be done!
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