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Introduction

In the classical setting of an i.i.d. (independent and identically distributed) sample, the problem
of prediction is not very interesting. Consequently, practitioners have focused on estimation and
hypothesis testing in this case. However, when the i.i.d. assumption breaks down, the prediction
problem is both important and intriguing; see Geisser (1993) for an introduction. Typical examples
include regression problems and/or dependent data.
Some key models are given below. The data are {Yt, for t = 1, . . . , n}, the errors εt are assumed
i.i.d. (0, 1) throughout, and Xt is a fixed-length vector of explanatory (predictor) variables. Letters
σ, a, ai, bi, etc. represent model parameters, b is a parameter vector, and µ(·) and s(·) are functions.

• Regression: linear/homoskedastic

Yt = X ′
t b + σεt, t = 1, . . . , n.(1)

• Regression: nonparametric/heteroskedastic

Yt = µ(X t) + s(Xt) εt, t = 1, . . . , n.(2)

• Time series: parametric (ARMA/ARCH)

Yt = b +
p∑

i=1

biYt−i + (a +
p∑

i=1

aiY
2
t−i)

1/2 · εt, t = 1, . . . , n.(3)

• Time series: nonparametric/heteroskedastic

Yt = µ(Yt−1, · · · , Yt−p;X t) + s(Yt−1, · · · , Yt−p;X t) εt, t = 1, . . . , n.(4)

The above examples represent some popular models for regression and time series data. The models
are general enough to include possible heteroskedasticities in the error variance in addition to their
potential nonparametric components. Given any one of these models, the optimal model-based pre-
dictors can be formed. Nevertheless, in what follows we show how the prediction problem can be
addressed in a model-free setting.



A general model-free prediction principle

In models such as (1)—(4), the predictive distribution of Yn+1 given the data Y n = (Y1, . . . , Yn)′ in
general may depend on Y n and on Xn+1 which is a matrix of observable, explanatory (predictor)
variables; for concreteness, assume the predictors are deterministic although provisions for random
regressors can be made. The notation Xn here is cumulative, i.e., Xn is the collection of all predictor
variables associated with the data Y t for t = 1, . . . , n; for instance, in the linear regression example
of eq. (1), the matrix Xn would be formed by concatenating together all the fixed-length predictor
vectors Xt, t = 1, . . . , n.
Let Yt take values in the linear space B which typically will be Rd for some integer d. The goal is
to predict g(Yn+1) based on Y n and Xn+1 without invoking any particular model; here g is some real-
valued (measurable) function. The key to successful model-free prediction is the following model-free
prediction principle. In a nutshell, the basic idea is to transform the non-i.i.d. set-up to an i.i.d.
dataset for which prediction is easy—even trivial—, and then transform back to the original setting
to obtain the model-free prediction.

Model-Free Prediction Principle.
(a) For any natural number m, suppose that a transformation Hm is found that maps the data

Y m = (Y1, . . . , Ym)′ and the explanatory variables Xm onto the i.i.d. sequence ε
(m)
m = (ε(m)

1 , . . . , ε
(m)
m )′

where each ε
(m)
i , i = 1, . . . ,m has distribution Fm, and Fm is such that Fm

L=⇒ some F as m → ∞.

(b) Suppose that the transformation Hm is invertible for all m (possibly modulo some initial condi-

tions denoted by IC), and—in particular—that one can solve for Ym in terms of Y m−1,Xm, and ε
(m)
m

alone, i.e., that

Ym = gm(Y m−1,Xm, ε(m)
m )(5)

and

Y m−1 = fm(Xm; ε
(m)
1 , . . . , ε

(m)
m−1; IC)(6)

for some functions gm and fm and for all m = 1, 2, . . ..
(c) Then, the L2-optimal model-free predictor of g(Yn+1) on the basis of the data Y n and the predictors

Xn+1 is given by the (conditional) expectation
∫

Gn+1(Y n,Xn+1, ε)dFn+1(ε) where Gn+1 = g ◦ gn+1

denotes composition of functions.

(d)The whole predictive distribution of g(Yn+1) is given by the distribution of the random variable

Gn+1(Y n,Xn+1, εn+1) where εn+1 is drawn from distribution Fn+1 and is independent to Y n. The

median of this predictive distribution yields the L1-optimal model-free predictor of g(Yn+1) given Y n

and Xn+1.

Typically, the distribution Fn+1 will be unknown but it can be consistently estimated by F̂n, the
empirical distribution of ε

(n)
1 , . . . , ε

(n)
n , under the assumed convergence in part (a). The estimator F̂n

can then be plugged-in to compute estimates of the aforementioned (conditional) mean, median, and
predictive distribution.
The abovementioned predictive distribution in part (d), and the expectation in part (c) are both
conditional on the value of Y n (and the value of Xn+1 when the latter is random). Note also the tacit
understanding that the ‘future’ εn+1 is independent to the conditioning variable Y n; this assumption



is directly implied by eq. (6) which itself—under some assumptions on the function gm—could be
obtained by iterating (back-solving) eq. (5). The presence of initial conditions such as IC in eq. (6)
is familiar in time series problems of autoregressive nature where IC would typically represent values
Y0, Y−1, . . . , Y−p for a finite value p; the effect of the initial conditions is negligible for large n. Note
that in regression problems the presence of initial conditions would only be required if the regression
errors are not independent.

Remark 1 The above empirical estimates of the (conditional) mean and median would typically be
quite accurate but the empirical estimate of the predictive distribution may be a bit too narrow, i.e.,
possessing a smaller variance and/or inter-quartile range than ideal. The reason is that a true predic-
tive distribution should incorporate the variability of F̂n; in other words, the predictive distribution’s
width/scale should be an increasing function of the degree of uncertainty regarding the shape of F ,
i.e., the variance of F̂n, and the same is true concerning estimation/fitting of any parameters in the
‘model-like’ equation (5). The only general way to practically capture such a widening of the predic-
tive distribution is given by resampling and/or subsampling methods should these be applicable in the
setting at hand; see e.g. Efron and Tibshirani (1993), or Politis, Romano and Wolf (1999).

Remark 2 Eq. (5) with ε
(m)
i being i.i.d. from distribution Fm looks like a model equation but it

is more general than a typical model. For one thing, the functions gm and Fm may change with
m, and so does ε

(m)
i which, in essense, is a triangular array of i.i.d. random variables. Furthermore,

no assumptions are made a priori on the form of gm. However, the process of starting without a
model, and—by this transformation technique—arriving at a model-like equation deserves the name
model-free model-fitting (MF2, for short).

Remarks on model-free model-fitting

The prediction principle sounds deceptively simple but its application is not. The task of finding
a set of candidate transformations Hn for any given particular set-up is challenging, and demands
expertise and ingenuity. Once, however, a set of candidate transformations is identified (and denoted
by H), the procedure is easy to delineate: Choose the transformation Hn ∈ H that minimizes the
(pseudo)distance d(L(Hn(Y n)),Fiid,n) over all Hn ∈ H; here L(Hn(Y n)) is the probability law of
Hn(Y n), and Fiid,n is the space of all distributions associated with an n-dimensional random vector
whose B–valued coordinates are i.i.d., i.e., the space of all distributions of the type F × F × · · · × F

where F is an arbitrary distribution on space B. There are many choices of distance or pseudo-distance
for d; see e.g. Hong and White (2005) and the references therein.
The application of the prediction principle appears similar in spirit to the Minimum Distance Method
(MDM) of Wolfowitz (1957). Nevertheless, their objectives are quite different since MDM is typically
employed for parameter estimation and hypothesis testing whereas in the prediction paradigm there
is no interest in parameters. A typical MDM searches for the parameter θ̂ that minimizes the distance
d(F̂n,Fθ), i.e., the distance of the empirical distribution F̂n to a parametric family Fθ. In this sense,
it is apparent that MDM sets an ambitious target (the parametric family Fθ) but there is no necessity
of actually ‘hitting’ this target. By contrast, the prediction principle sets the minimal target of
independence but its successful application requires that this minimal target is more or less achieved.



Remark 3 If a model such as (1)—(4) is available, then the model itself suggests the form of the
transformation Hn, and the residuals from model-fitting would serve as the ‘transformed’ values ε

(n)
t .

Of course, the goodness of the model should now be assessed in terms of achieved “i.i.d.”—ness of
these residuals. It is relatively straightforward—via the usual graphical methods—to check that the
residuals have identical distributions but gauging their independence is trickier. Nevertheless, if the
residuals happened to be (jointly) Gaussian, then checking their independence would be easier since
in this case it would be equivalent to checking for correlation; for example, in the time series case a
standard correlation test is the Ljung-Box.

The above ideas motivate the following variation of the prediction principle that may be of particular
usefulness in the case of dependent data.

Transformation into Gaussianity as a Prediction Stepping Stone.

(a) For any natural number m, suppose that a transformation Hm on Bm is found that maps the

data Y m = (Y1, . . . , Ym)′ into the jointly Gaussian vector W
(m)
m = (W (m)

1 , . . . ,W
(m)
m )′ with covariance

matrix Vm whose eigenvalues—viewed as sequences in m—are bounded above and below by positive

constants.

(b) Also suppose that the transformation Hm is invertible (possibly modulo some initial conditions

denoted by IC), and—in particular—that one can solve for Ym in terms of Y m−1,Xm, and W
(m)
m

alone, i.e., that

Ym = g̃m(Y m−1,Xm,W (m)
m )(7)

and

Y m−1 = f̃m(Xm; W
(m)
1 , . . . ,W

(m)
m−1; IC)(8)

for some functions g̃m and f̃m for m = 1, 2, . . .. Finally, define the vector ε
(m)
m = (ε(m)

1 , . . . , ε
(m)
m )′ to

equal V
−1/2
m W

(m)
m where V

1/2
m is a square root of matrix Vm. Note that Ym = g̃m(Y m−1,Xm,W

(m)
m ) =

g̃m(Y m−1,Xm, V
1/2
m ε

(m)
m ) which we can rename as gm(Y m−1,Xm, ε

(m)
m ) since the random vector (ε(m)

1 ,

. . . , ε
(m)
m−1)

′ is related in a one-to-one fashion to Y m−1 (by induction on m).

Let Fn denote the common normal distribution of ε
(n)
1 , . . . , ε

(n)
n that are i.i.d. by construction. Then,

the L1 and L2–optimal model-free predictors and the predictive distribution of g(Yn+1) given Y n and

Xn+1 are given verbatim by parts (c) and (d) of the Prediction Principle.

In applications, the covariance matrix Vn must be estimated from W
(n)
1 , . . . ,W

(n)
n using some extra

assumption on its structure (e.g., a Toeplitz structure in stationary time series), or an appropriate
shrinkage and/or regularization technique—see e.g. Bickel and Li (2006) and the references therein;
then, the estimate V̂n must be extrapolated to give an estimate of Vn+1. As before, the distribution
Fn+1 can be consistently estimated by F̂n, the empirical distribution of ε

(n)
1 , . . . , ε

(n)
n , or by a Gaussian

distribution with unit variance and estimated mean; the former option may be more robust in practice.
Applying the Gaussian ‘stepping stone’ can be formalized in much the same way as before. To
elaborate, once H, the set of candidate transformations is identified, the procedure is to: choose the
transformation Hn ∈ H that minimizes the distance d(L(Hn(Y n)),Φn) over all Hn ∈ H where now
Φn is the space of all n-dimensional Gaussian distributions on B. Many choices for the distance d are



again available, including usual goodness-of-fit favorites such as the Kolmogorov-Smirnov or χ2 test;
a pseudo-distance based on the Shapiro-Wilk statistic is also a valid alternative.
However, now that Hn is essentially a normalizing transformation, a collection of graphical and ex-
ploratory data analysis (EDA) tools are also available to facilitate this search. Some of these tools
include: (a) Q-Q plots of the W

(n)
1 , . . . ,W

(n)
n data to test for Gaussianity; (b) Q-Q plots of linear com-

binations of W
(n)
1 , . . . ,W

(n)
n to test for joint Gaussianity; and (c) autocorrelation plots of ε

(n)
1 , . . . , ε

(n)
n

to test for independence—since in the (jointly) Gaussian case, independence is tantamount to zero
correlation.

Application to financial time series

We now consider data Y1, . . . , Yn arising as an observed stretch from a financial returns time series
{Yt, t ∈ Z} such as the percentage returns of a stock price, stock index or foreign exchange rate. The
series {Yt} will be assumed stationary with mean zero which—from a practical point of view—implies
that trends and other nonstationarities have been successfully removed.
The modeling work-horse in such a context is given by the well-known ARCH/GARCH models. The
simplest ARCH(p) model of Engle (1982) is described by eq. (3) with b = b1 = b2 = · · · = 0 and
errors εt that are i.i.d. N(0, 1). Observe that, under such an ARCH(p) model, the quantity εt =
Yt(a +

∑p
i=1 aiY

2
t−i)

−1/2 is thought of as perfectly normalized and variance–stabilized as it is assumed
to be i.i.d. N(0, 1). Thus, as in Remark 3, the ARCH model seems to suggest the form of a normalizing
transformation.
However, as practitioners realized early-on, the residuals from ARCH and GARCH fitting do not

look normal; see e.g. Shephard (1996). Rather than discarding the ARCH model altogether, we may
instead attempt to tweak it in order to obtain a proper normalizing transformation for the Gaussian
‘stepping stone’ prediction approach. Note that the ARCH model residuals appear to be studentized
returns, i.e., the return divided by a (time-localized) estimate of its standard deviation. But there is
no reason—other than coming up with a neat model—to exclude the value of Yn from an empirical
estimate of the standard deviation of the same Yn based on the data {Ys, s ≤ n}.
So, we may define a new studentized quantity

Wt :=
Yt√

αs2
t−1 + a0Y 2

t +
∑p

i=1 aiY 2
t−i

for t = p + 1, p + 2, . . . , n(9)

with Wt = Yt for t = 1, . . . , p; here s2
t−1 = (t − 1)−1

∑t−1
k=1 Y 2

k is an estimator of V ar(Y1). The order
p and the vector of nonnegative parameters (α, a0, . . . , ap) are chosen by the practitioner with the
normalization of Wt as target. As shown in Politis (2003a,b), it is always possible to find data-based
configurations of the above parameters so that the normalization goal is indeed achieved. Note that
eq. (9) can be uniquely solved for Yt to give:

Yt =
Wt√

1 − a0W 2
t

√√√√αs2
t−1 +

p∑
i=1

aiY
2
t−i for t = p + 1, p + 2, . . . , n.(10)

Thus, as desired, the transformation from Y n to Wn is invertible (given the initial conditions Y1, . . . , Yp)
with an explicit formula relating Yt to W1, . . . ,Wt, i.e., a ‘model-like’ equation of type (5).



Eq. (10) looks like a regular ARCH(p) model with the non-normal errors Ut = Wt/
√

1 − a0W 2
t . Now if

the Wts are deemed to be independent, then this is indeed true and leads to a particular suggestion for
a heavy-tail distibution for the errors; see Politis (2004). However, if the Wts are not independent, then
the prediction principle associated with eq. (10) will yield quite different predictions than an ARCH
model with heavy-tailed errors. Furhermore, if the objective is just prediction, say of g(Yn+1), then
the predictor follows immediately from the prediction principle, and modelling issues are superfluous.
For example, in predicting squared returns, i.e., g(x) = x2, Politis (2007) shows empirically that
the model-free prediction principle outperforms predictors arising from ARCH/GARCH models with
normal and/or heavy-tailed errors. In addition, it is conceivable that the prediction principle would
be more robust in practice since it is totally data-based and, in the end, an empirical distribution
is the driving force. This robustness is being corroborated by simulations and real data examples in
Politis and Thomakos (2007) who show the superior performance of model-free predictors in many
problematic settings such as time series with structural breaks, regime switching, local—as opposed
to global—stationarity, etc.

REFERENCES (RÉFERENCES)

Bickel, P. and Li, B. (2006). Regularization in Statistics, Test, vol. 15, no. 2, 271-344.

Efron, B. and Tibshirani, R.J. (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation,
Econometrica, 50, 987-1008.

Geisser, S. (1993). Predictive Inference: An Introduction, Chapman and Hall, New York.

Hong, Y. and White, H. (2005). Asymptotic distribution theory for nonparametric entropy measures of serial
dependence, Econometrica, Vol. 73, No. 3, 837-901.

Politis, D.N. (2003a). Model-free volatility prediction. UCSD Dept. of Economics Discussion Paper 2003-16.
[http://repositories.cdlib.org/ ucsdecon/2003-16]

Politis, D.N. (2003b). A normalizing and variance-stabilizing transformation for financial time series, in Recent
Advances and Trends in Nonparametric Statistics, (M.G. Akritas and D.N. Politis, Eds.), Elsevier (North
Holland), pp. 335-347.

Politis, D.N. (2004). A heavy-tailed distribution for ARCH residuals with application to volatility prediction,
Annals of Economics and Finance, vol. 5, pp. 283-298.

Politis, D.N. (2007). Model-free vs. model-based volatility prediction. J. Financial Econometrics, vol. 5, no. 3,
pp. 1-31.

Politis, D.N., Romano, J.P. and Wolf, M. (1999), Subsampling, Springer Verlag, New York, 1999.

Politis, D.N., and Thomakos, D. (2007). NoVaS transformations: flexible inference for volatility forecasting,
working paper.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Time Series Models in Economet-
rics, Finance and Other Fields, D.R. Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (eds.), London: Chapman
& Hall, pp. 1-67.

Wolfowitz, J. (1957). The minimum distance method, Ann. Math. Statist., 28, 75–88.



ABSTRACT

Some principles of model-free prediction are laid out based on the notion of transforming a given
set-up into one that is easier to work with, e.g., i.i.d. or Gaussian. An application to financial time
series is discussed in detail, namely the problem of prediction of squared returns. As it turns out, the
transformation technique outperforms the well-known ARCH/GARCH models in terms of predictive
accuracy.

RÉSUMÉ

Quelques principes de prévision sans-modèle sont présentés ont basé sur la notion de transformer
une installation donnée en une avec laquelle est plus facile de travailler, par exemple, indépendance
ou Normalité. Une application à la série chronologique financière est discutée en détail, à savoir le
problème de la prévision des retours carrés. Pendant qu’elle s’avère, la technique de transformation
surpasse les modèles bien connus ARCH/GARCH en termes d’exactitude prédictive.


