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Abstract 

The mode MaaS (means here ‘ride-pooling’) is quite new in demand modelling. Because of its 

microscopic nature, many researchers conclude microscopic demand models like activity-or 

agent-based models (ABM) to be unavoidable. 

This paper discusses a hybrid approach to integrate MaaS into a macroscopic demand model. 

It preserves the microscopic characteristics of MaaS but remains in a macroscopic framework 

and keeps thereby the desirable convergence properties of macroscopic models. In the second 

section of the paper, we report about an application of the approach with the transport 

planning software PTV Visum. 

Even though the current trend is going away from macroscopic towards microscopic demand 

modelling, the topic discussed here is still highly demanded. The majority of existing and 

running models is based on the traditional four-step approach (or on derivates of it) and many 

of them need a MaaS update rather than a complete re-construction towards ABM. This paper 

shows that MaaS can be integrated appropriately into these models preserving most of their 

original convergence qualities. 
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1. Problem description 

1.1 Definition of MaaS 

The transport system we call “MaaS” in this paper has different names in the transport 

community. In this paper, MaaS means a taxi system, which can take additional passengers 

during its rides (ride-pooling or ride-sharing). The system has one dispatcher, planning the 

tours of all taxi vehicles in real-time. The MaaS system works under some fixed constraints 

like fleet size and maximum passenger waiting time. 

The experiments of this paper are carried out with the tour planning procedure of the transport 

planning software PTV Visum. 

1.2 Literature research 

The current publications can be divided into two groups: one group like Friedrich (2018) 

integrates MaaS into the framework of a macroscopic demand model. Typically, these papers 

don’t consider the full microscopic nature of MaaS. The MaaS simulation is typically not based 
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on a sound dispatching algorithm, the discrete localisations of trip starts and ends don’t play 

an appropriate role. These papers serve well as studies of potential but are not suited to fully 

understand the impact of all aspects of MaaS on the demand.  

The other group stresses the microscopic nature of MaaS and concludes the necessity of 

microscopic demand modelling, agent- or activity-based. The papers which deal with agent-

based models like Ciari (2009) focus on the implementation of a detailed and realistic MaaS 

system rather than on stability problems. The activity-based papers like Jittrapirom (2017) 

mainly focus on the precise modelling of human decision-making referring to all aspects of 

MaaS. There is no doubt, ABM (both activity- and agent-based) may be an appropriate 

approach, but it is not mandatory. 

The open question is how to keep the microscopic characteristics of MaaS within a macroscopic 

demand model and at the same time produce stable results and consequently convergent 

demand models. The importance of convergence cannot be overestimated, since it is crucial 

for the modeller’s ability to separate the true impact of MaaS from random fluctuations. 

1.3 Research objectives 

Macroscopic models are based on zones, whereas MaaS simulations need a much higher 

resolution. Different from the traditional modes, the performance of MaaS depends highly on 

concrete locations and times of the trip requests. Shifting the start point of a MaaS trip by 50 

metres or by a few minutes can be crucial for the possibility to be picked up by another MaaS 

vehicle having a similar destination.  

Therefore, modelling MaaS requires the dis-aggregation of the demand, otherwise the model 

ignores the MaaS specific characteristics. Since the macroscopic modeller does not know 

anything below the zone level (and nothing about the temporal distribution), such a dis-

aggregation is necessarily random. In addition, it changes a fractional demand randomly to an 

integer one. Among simulations, that leads to a highly variable demand what determines highly 

variable and hence unstable skims what hides the correlation between supply and demand and 

worsens convergence. 

This paper presents a hybrid approach which dis-aggregates the demand to feed the MaaS 

simulation and re-aggregates the observed skims to continue macroscopically. It focusses on 

the problem of instability and discusses an aggregation approach. 

The MaaS implementation we used for our experiments refuses trip requests, if they cannot be 

served with at least a certain user-defined quality. Thus, we were faced with the existence of 

unserved demand. This paper discusses an approach, how to reduce the mode utility due to 

unserved demand. 

2. Hybrid approach 

2.1 Model 

We apply the hybrid approach to a PTV Visum model of the city of Halle an der Saale in 

Germany.  
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Figure 1: The PTV Visum model of Halle an der Saale with zones drawn in blue. 

The Model consists of 81 Zones, 8 main zones, and a reduced network (without pure residential 

streets, about 5000 links). The tour-based demand model comprises 7 person groups, 7 

activities and 6 modes. The MaaS system operates in 61 zones (only city) with 451 stops for 

MaaS vehicles. The MaaS fleet comprises 200 vehicles with 4 seats each. 

2.2 Model Structure  

The hybrid approach fits perfectly in a traditional 4-step demand model. Within the demand 

loop, the MaaS demand is discretised which feeds a MaaS simulation. The observed travel 

characteristics are aggregated on zone level and serve as skims for the demand model. 

1. Initial skims 

2. Calculation of demand 

3. Discretising MaaS demand 

4. Performing a microscopic MaaS simulation 

5. Aggregating characteristics of MaaS trips on zone relation level 

6. Assignment PrT including MaaS vehicles 

7. Re-calculation of PrT skims 

8. Back to Step 2, until demand converges 

The mode utilities for MaaS, which are used within the demand calculation, are based on the 

aggregated results of the microscopic MaaS simulation. The utility components of the mode 

MaaS are, among others, mean and standard deviation of travel and wait time.  

2.3 Results 

The following table shows the number of converged OD-relations per mode in each iteration 

of the demand loop. An OD-relation is called converged, if the change Δ of demand (with 

respect to the previous iteration) meets the condition 

 | Δ | ≤ min { 5, max { Old, New } • 0.01 + 1 }. 
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Table 1. Results of the iterative demand loop.  

 Non-converged OD relations 

It Bike Car CarP* MaaS PT Walk 

0 1650 672 345 2737 1037 645 

1 121 296 118 255 147 112 

2 183 16 5 886 94 165 

3 438 1 130 1733 224 207 

4 359 1 249 1893 185 152 

5 93 1 105 1263 80 63 

6 11 0 15 775 56 29 

7 0 0 10 678 44 28 

8 1 0 4 768 52 41 

9 0 0 1 697 32 24 

10 3 0 1 748 45 43 

*CarP stands for “Car as Passenger” 

 

The results are quite unstable, especially the number of non-converged MaaS OD-relations 

stays on a high level. It is seen that the system cannot go beyond a certain level of stability.  

3. Aggregation 

Assuming a certain utilisation of MaaS, the performance of a MaaS trip depends on the 

existence of other MaaS trips in the neighbourhood. In this sense, the performance for a 

certain relation is highly correlated with the performance in the area around the relation, 

where “area” means here “similar relations”. It is the accessibility and the centeredness of the 

extended areas around the trip start and end which mainly determine the average performance 

of the trip. These extended areas will be defined as sets of zones, called main zones1. 

For that, assume the MaaS travel times TTMaaS to be the product of the fixed (i.e. non-random) 

car travel time TTact and a random relation-dependent detour factor D 

TTMaaS = D • TTact. 

D can be estimated based on all performed MaaS trips of a relation. 

Our studies (see the preceding section) showed that in practical cases estimates of D are too 

unstable and that many simulations are necessary to get somehow stable results.2 The idea is 

now to expand the basis of the estimation to get more stable results. 

From the discussion in the paragraph above it follows quite natural to assume all relations 

within the same main zone relation to behave similarly. They all share the same random 

mechanism and their detour factors be independent realisations of the same random 

mechanism. Then, the estimation basis of the mean detour factor expands to all performed 

MaaS trips of a main zone relation. Our studies show (see the corresponding section below) 

that this simplification is the decisive thing to get stable results without any repetitions of MaaS 

assignments inside the demand loop what finally results in moderate model runtimes. 

Of course, the assumption of identically distributed detour factors within a main zone relation 

is quite weak. The error is the larger, the more zones are aggregated to a main zone. In addition, 

the resolution of the MaaS sub-model worsens to main zones. Obviously, the modeller is faced 

with a trade-off between precision and stability.  

                                                 
1 A main zone is a set of traffic analysis zones. For the sake of simplicity, we ignore the temporal aspect here. 
2 By the way: the same problem should occur with activity- and agent-based models. 
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4. Unserved demand 

Unserved demand occurs when trip requests cannot be served with a minimum quality at least. 

A rejected trip request does not mean that the person cannot perform her trip. The idea is that 

a passenger can check in advance whether her trip request can be served or not. In case of 

rejection, a second mode choice (now without the MaaS alternative) is assumed.  

This section discusses the penalty which is added to the utility to reflect the utility loss resulting 

from unserved demand. 

The dis-utility due to an unserved trip is quite complicated to estimate and depends on the very 

concrete specification of the existing MaaS system. Therefore, we propose a quite simple, but 

intuitive approach. 

Assume the typical iterative structure of demand models as in Section 2.2. 

Be Tn the number of trips with MaaS in the nth iteration and Un the number of unserved trip 

requests. Then we define the penalty for the next iteration of demand calculation as 

Pn+1 ≈ - f • ( Un / Tn ), 

where f is specific to the concrete MaaS system, expressing the scale of utility loss due to 

unserved trip requests. 

5. Application Example 

We apply the hybrid main zone approach to the same model as above with 8 main zones. 

 
Figure 2: PTV Visum model of Halle an der Saale with 8 main zones. 

5.1 Results 

This section lists the results of some scenarios which show 

 that the MaaS demand convergences within the demand loop, 

 that the results are independent from the start solution, 

 that the approach results in reasonable sensitivities for some selected scenarios. 

 

Convergence 
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The first results show the degree of convergence of the MaaS demand. 

 

Table 2A. Results of the iterative demand loop, applying the main zone approach.  

 Demand 

It Bike Car CarP MaaS (Uns*) PT Walk 

0 78812 170674 35310 179 (0) 68083 104935 

1 77450 172687 36340 884 (1) 66902 103729 

2 76182 173526 36543 3142 (8) 66027 102573 

3 74679 173755 35928 7030 (113) 65092 101509 

4 73277 173735 34979 10996 (408) 64303 100703 

5 72420 173603 34246 13662 (508) 63806 100257 

6 71889 173509 33709 15309 (670) 63569 100007 

7 71645 173418 33480 16101 (648) 63456 99892 

8 71513 173506 33322 16404 (1042) 63390 99860 

9 71572 173485 33301 16188 (1019) 63496 99950 

10 71660 173470 33373 16072 (861) 63454 99965 

* Unserved: demand, which was originally assigned to MaaS, but could not be served; has been divided among 

the remaining modes. 

 

Table 2B. Results of the iterative demand loop, applying the main zone approach.  

 Non-converged OD relations 

It Bike Car CarP MaaS PT Walk 

0 0 71 23 0 15 9 

1 61 196 68 195 111 85 

2 65 10 0 617 53 75 

3 120 0 58 1107 98 71 

4 126 1 81 1216 88 47 

5 32 0 40 784 39 18 

6 8 1 26 459 11 11 

7 0 0 1 120 1 4 

8 0 0 0 95 1 1 

9 0 0 0 48 8 6 

10 0 0 0 68 1 1 

 

The reached level of stability is high, although the MaaS demand has the worst convergence 

behaviour. However, considering the microscopic simulation nature of this mode, the shown 

convergence is remarkably good. 

 

Independence of start solution 

For the first iteration of the demand loop, the utility of the mode MaaS must be set to a certain 

initial value. For the base model, we set the journey travel time to a multiple of the car travel 

time. To proof that the initial value does not influence the results, we changed the initial factor 

from originally 20 to 5. 

 

Table 3. Result after changing the initial travel time for MaaS. 

Demand 

Scenario Bike Car CarP MaaS (Uns) PT Walk 

5 71683 173458 33385 16001 (803) 63460 100006 

20 71660 173470 33373 16072 (861) 63454 99965 

 

The results after ten iterations differ only very slightly from those of the base model. 
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Fleet size 

This scenario shows that the system reacts reasonably on fleet size changes. The following 

results are based on a fleet size of 100 vehicles instead of 200. 

 

Table 4. Result after changing the fleet size. 

Demand 

Scenario Bike Car CarP MaaS (Uns) PT Walk 

100 73567 174531 34681 9407 (2299) 64393 101414 

200 71660 173470 33373 16072 (861) 63454 99965 

 

The resulting demand is lower than in the base model, but the reduction is, as expected, less 

than the fleet size reduction of 50%. The considerably increased amount of unserved trip 

requests (2299 in contrast to 861) is also in line with the expectations. 

 

Reduction of stop points 

The base model contains 451 stop points for MaaS vehicles. We reduced them randomly to 266 

stop points. 

 

Table 5. Result after reducing the MaaS stop points to pick up and drop of passengers. 

Demand 

Scenario Bike Car CarP MaaS (Uns) PT Walk 

266 72324 173674 33888 13961 (829) 63748 100397 

451 71660 173470 33373 16072 (861) 63454 99965 

 

The reduction of stop points results in a loss of MaaS passengers, because the walk trips to the 

stops have become longer. Again, the reaction of the system is within the expected range. 

6. Conclusion 

Although MaaS has a microscopic nature, which can be represented only based on simulations, 

we showed that MaaS can be fully integrated into a macroscopic demand model. The hybrid 

approach discussed here preserves the microscopic characteristics of MaaS while keeping a 

remarkable good level of convergence. A set of model scenario runs proofed the reasonable 

sensitivities of the integrated demand model. 
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