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In reviewing developments in transportation research, both Schlich and Axhausen (2003) and Heinen 

and Chatterjee (2015) have highlighted the disproportionate amount of attention paid to the 

variability between people, in contrast to the variability in an individual’s behaviour from day-to-day.  

The latter, known as intrapersonal variability, is important because the regularity (or irregularity) of 

an individual’s trips can provide an insight into their transport needs (Schlich and Axhausen, 2003).  

This research focuses on spatial aspects of intrapersonal variability as this provides information 

about the familiarity of travellers with different parts of the network, for example alternative routes 

or access to destinations in different parts of the city.  This could inform models of traveller response 

to network disruptions.  Information about the different parts of the network used over time could 

also inform the development and modelling of transport policies involving spatial boundaries such as 

fare zones or congestion charging zones.  Measures of spatial intrapersonal variability also provide 

insights into the predictability of traveller behaviour and thus could inform the parameter values for 

day-to-day dynamical models which include learning mechanisms, for example the “switching choice 

probability” (Cantarella and Cascetta, 1995) which relates to travellers reconsidering, but not 

necessarily changing, their previous route choice.  Understanding intrapersonal variability can also 

inform the development of user classes, for example based on attitude to risk (Shao, Lam and Tam, 

2006) or information availability (Han et al., 2018), and the corresponding parameters for modelling 

choices.   

Spatial intrapersonal variability is increasingly relevant due to the impacts of Information and 

Communication Technologies (ICT) on travel.  Changes in ICT have meant that more people can work 

(at least occasionally) remotely (Felstead, 2012) and real-time information now plays a greater role 

in route choice.  ICT is also enabling new mobility services, many of which operate on an on-demand 

basis.  For such services to be economically viable, it is crucial that everything from the charging 

structures to the organisation of vehicles and staff are designed based on traveller needs, which 

includes their multiday behaviour.  Telecommunication technologies are also having an impact upon 

the data we can collect relating to mobility.   

For this research, Bluetooth data was identified as the most suitable source of data as it can be 

passively collected in large quantities, it is closely linked to the road network and it is a relatively 

cheap source of data which has been implemented in many cities.  Data from fixed Bluetooth 

detectors is becoming increasingly popular for measuring travel times on the road network 

(Haseman, Wasson and Bullock, 2010; Hainen et al., 2011; Moghaddam and Hellinga, 2013), 



particularly in urban areas, and has also been used in OD estimation (Barcelö et al., 2010; Carpenter, 

Fowler and Adler, 2012).   

To the knowledge of the authors, Bluetooth data has only been used to examine intrapersonal 

variability (or more correctly intra-device variability) by Crawford et al. (2018).  In that paper, a 

method was proposed for estimating road user classes based on repeated trip behaviour including 

trip frequency, and both spatial and time of day intrapersonal variability.  Spatial variability was 

examined by firstly grouping together similar trip sequences, by comparing trip sequences using 

Sequence Alignment then using k-means clustering to obtain a more manageable number of spatial 

categories.  Spatial variability for each device was then measured by counting the number of spatial 

categories their trips were classified into and the percentage of their trips which were in their most 

commonly used spatial category. 

Previous work has not, however, taken into account the fact that different sensor locations will 

result in different probabilities of detecting a passing Bluetooth device.  Also, whilst Crawford et al. 

(2018) used real-world data to demonstrate the clustering of trip sequences, the findings related to 

broader road user classifications based on repeated trip behaviour and so methods of gaining useful 

insights from the spatial variability data alone were not considered.  The current research seeks to 

fill these two gaps in the literature. 

 

Methodological approach 

This research builds upon the spatial clustering methodology presented in Crawford et al. (2018).  

Firstly, a model is developed to estimate the probability of detection at a sensor location based on 

the road characteristics.  The model is developed by measuring detection rates at the central sensor 

within ‘trios’ of Bluetooth detectors, where the shortest path between the two outermost sensors (A 

and C) passes the central sensor (B), and then relating these detection rates to road characteristics 

at the central sensor.  A modified version of the Sequence Alignment procedure used in Crawford et 

al. (2018) was then developed which incorporates these sensor-specific probabilities of detection 

when comparing trip sequences.  The Sequence Alignment procedure was used to measure the 

distance between trip sequences so that they could be clustered into groups with similar spatial 

characteristics.   

One way to examine the spread of each person’s trips across the set of spatial categories is to use 

the Herfindahl-Hirschman Index (HHI).  The HHI is often used for examining the market share of 

different businesses and it is also known as Simpson’s Diversity Index in ecology, where it is used to 

measure species diversity.  The HHI has also been used to measure intrapersonal variability in travel 

choices (Heinen and Chatterjee, 2015; Susilo and Axhausen, 2014).  In this research, a normalised 

HHI is calculated for each person separately.  The values for the normalised HHI fall within the 

interval from 0 to 1, where a value of 0 equates to making an equal number of trips in each possible 

spatial category during the year, and a value of 1 equates to all trips being within a single spatial 

category.   

The normalised Herfindahl-Hirschman Index can be calculated as follows: 
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where 𝑀 is the total number of spatial categories, and 𝑠𝑖 is the proportion of (this traveller’s) trips 

belonging to spatial category 𝑖. 



By having a single measure of spatial diversity for each traveller, intrapersonal comparisons can be 

made, for example the spatial diversity of trips on weekdays versus weekend days. 

An alternative way to examine the spatial nature of the trips is to assess the relationships between 

the spatial categories, not in terms of geographic proximity (as was considered in the Sequence 

Alignment process), but in terms of the proportion of users who frequently make trips from both of 

two given categories, for example. 

This can be examined using Association Analysis (Tan, Steinbach and Kumar, 2014, Chapters 6 and 7).  

This approach, also known as Market Basket Analysis, has been used previously in transportation 

research, for example by Pande and Abdel-Aty (2009) to examine relationships between crash 

characteristics.  Traditionally, the method has been used to identify a set of association rules which 

provide insights into the products which are commonly purchased together in shops.  In the current 

application, the method is used to examine whether regular travellers who commonly make trips 

within spatial cluster X also make trips within another (given) spatial cluster Y.  If an association is 

identified, this rule would be denoted by: 𝑋 → 𝑌.  The association rules are then sorted based on 

their confidence measures (namely the proportion of people who make trips in cluster X who also 

make trips in cluster Y). 

  

Expected results 
A case study application was undertaken using data from eight sites over a one year period 

(1/1/2015 to 31/12/2015).  The sites are in and around the town of Wigan in northwest England 

(Figure 1).  Devices which recorded 52 or more trips within the case study area during the year were 

retained for the analysis, resulting in 9,564 devices in total.  Estimated sensor-specific detection 

rates are shown in Table 1. 

 

 

Table 1: Estimated 
detection rates  

Ref 
Estimated 

detection rate (%) 

S1 73 

S2 71 

S3 88 

S4 76 

S5 66 

S6 88 

S7 74 

S8 57 
 

Figure 1: Case study area including Bluetooth detector locations 
 



After grouping trip sequences as discussed above, the spatial diversity in trips undertaken by each 

person was calculated.  Figure 2 shows the distribution of the HHIs across all devices.  The peak has a 

HHI of approximately 0.08 and one way of obtaining this value is to use 10 of the 55 spatial 

categories and to use them all equally often. 

 

Figure 2: Histogram of the normalised Herfindahl–Hirschman Index 
 

Of the people making at least 10 trips on weekdays and at least 10 trips on weekdays (6,664 people), 

57% had a larger HHI for weekends than weekdays.  This suggests that people are more likely to 

have a more even distribution of trips across multiple spatial categories on weekdays. 

Association rules were also constructed for the relationships between spatial categories.  Additional 

processing was required as 16 of the categories had a paired category which approximately related 

to the reverse journey.  Unsurprisingly, the strongest associations were identified between these 

pairs of trips.  After accounting for these relationships, the analysis highlighted a key group of trips 

(one spatial category) in the town centre which provided the only spatial overlap between people 

travelling to and from the town centre from the south and travellers using a combination of all other 

routes into and within the centre.   
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