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Introduction1

Aggregated traffic models were introduced by Godfrey (1969) and later revisited by2

Daganzo (2007) and Geroliminis & Daganzo (2008). These traffic models require3

the partition of the city network (see e.g., Saeedmanesh & Geroliminis, 2016, 2017,4

Lopez et al., 2017, Casadei et al., 2018) into regions, where the traffic conditions are5

approximately homogeneous. Such partition defines the regional network. In each6

region, the traffic states are measured through the vehicles’ accumulation n(t) and7

are regulated by a Macroscopic Fundamental Diagram (MFD). The MFD reflects8

the relationship between the average circulating flow of vehicles and the average9

density in the region.10

The regional network definition brings new challenges. Figure 1 depicts the11

challenge of scaling up trips to the regional network. The green and blue trips follow12

a sequence of links in the city network, with a fixed length. The green and blue13

trips cross a different sequence of regions, following the city network partitioning.14

The ordered sequence of crossed regions by a trip is called regional path. The green15

and blue trips describe different travel distances inside each region, as highlighted16

in the gray region. Therefore, regional paths are characterized by distributions17

of trip lengths, containing information of the plausible travel distances in the city18
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Fig. 1 – The scale up of trips into regional paths, that are characterized by
trip length distributions.

network. Batista et al. (2018) and Batista et al. (in prep.) propose a methodological1

framework to calculate trip length distributions based on a set of trips and different2

levels of information from the regional network. The first level calculates trip length3

distributions considering the travel distances of all trips crossing one region. This4

assigns a common trip length distribution for all regional paths that cross the same5

region, independtly of their Origin and Destination (OD). We refer to this level as6

Mstandard. The most detailed level only considers the trips that define the same7

regional path. This allows to derive different trip lengths for all regional paths that8

cross the same region. We refer to this level as Mreference. The authors show that9

Mstandard is not able to capture the trip lengths variability of all regional paths10

crossing the same region. Moreover, they also show that the calibration of the trip11

lenghts clearly influences the modeled traffic dynamics inside the regions.12

Up to now, most of the MFD applications have been designed to test con-13

trol algorithms or design perimeter control strategies. Daganzo (2007), Keyvan-14

Ekbatani et al. (2012) and Ekbatani et al. (2013) tested perimeter control strategies15

for a one region network, where all vehicles were assigned a common average travel16

distance. Some theoretical studies (see e.g., Haddad, 2017, Zhong et al., 2017, Yang17
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et al., 2018) focused on the outflow-MFD application, where all vehicles were as-1

signed the same trip length. Aboudolas & Geroliminis (2013) and Kouvelas et al.2

(2017) tested perimeter control strategies in real city networks, but an average trip3

length for all regions was also considered.4

Research contribution5

In this paper, we propose to investigate the role of the trip lengths calibration6

for perimeter control strategies. The goal is to quantify the effects of improper7

assumptions on the travel distances in the regions on Model Predictive Control8

(MPC) based control strategies. In this extended abstract, we discuss some initial9

and preliminary results obtained by a Proportional-Integral (PI) gating control10

scheme on a real network.11

Test scenario and methodological framework12

The test network is depicted in Figure 2 (a). It includes the 3rd and 6th districts of13

Lyon and the city of Villeurbarnne (France). The network has 3127 nodes and 336314

links and is divided into seven regions. Figure 2 (b) depicts the MFD functions.15

They were calculated by assuming a bi-parabolic shape to fit microscopic simulation16

data obtained from Symuvia (Leclercq, 2007).17

The calculation of the trip lengths and regional paths are based on a virtual18

trips set in the city network. To gather this set, we randomly sample 3 million19

origin and destination nodes in the city network and calculate the shortest-path in20

distance between each of them. To obtain the regional paths, we filter all trips by21

the specific sequence of regions they cross. For each regional OD pair, the regional22

paths are ranked according to the number of trips they have associated. For our case23

study, we consider three OD pairs: 1-7; 4-2; and 6-4. To define the regional choice24

set for each OD pair, we gather the two regional paths with the largest number of25

trips associated. We calculate the trip lengths distributions following the Mstandard26

and Mreference described in the Introduction (see also Batista et al., 2018, in prep.,27

, for more details). The regional paths and demand assignment coefficients are28

listed in Table 1. The average trip lengths calculated by Mstandard and Mreference29

are listed in Table 2. The demand scenarios for the three OD pairs are shown in30

Figure 2 (c). The traffic states are simulated through an accumulation-based MFD31

model (Daganzo, 2007, Geroliminis & Daganzo, 2008), for a total simulation period32

of T = 20000 seconds.33

Our goal is to control the maximum vehicles’ accumulation in region 3 (i.e.34

(n3(t))). For this purpose, we designed a gating control composed by three PI35

controllers with an anti-windup scheme to track the desired set-point, i.e. (n3(t)).36

Figure 3 depicts the PI-based gating control scheme that is implemented. The37

inflows of regional paths 1 − 3 − 5 − 7 (I3,1
1), 4 − 3 − 2 (I3,2) and 6 − 5 − 3 − 4 (I3,3)38

are manipulated by the PI controller before entering region 3. The new inflows are39

u3,1(t), u3,2(t) and u3,3(t). The manipulation by the controller is done such that40

n3(t) is maintained at the set-point. The ouflows (o3,1, o3,2, o3,3) will continue to the41

next regions in the sequence of the correspoding regional paths. In this example,42

1The first subscript refers to the region that is being controlled. The second subscript
refers to the regional paths will cross region 3.
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Fig. 2 – (a) Villeurbarnne and the 3rd and 6th districts of Lyon (France)
traffic network, divided into seven regions. (b) MFD function of each region.
(c) Demand scenarios.
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O D Regional Assignment
path coefficient

1 7 1-2-6-7 0.15
1-3-5-7 0.85

4 2 4-1-2 0.25
4-3-2 0.75

6 4 4-3-2 0.00
6-5-3-4 1.00

Tab. 1 – Regional paths and the assignment coefficients used for this study.

Method Regional path Region
1 2 3 4 5 6 7

St
an

da
rd 1-2-6-7 987 649 ∼ ∼ ∼ 694 926

1-3-5-7 987 ∼ 880 ∼ 1042 ∼ 926
4-1-2 987 649 ∼ 1347 ∼ ∼ ∼
4-3-2 ∼ 649 880 1347 ∼ ∼ ∼
6-5-3-4 ∼ ∼ 880 1347 1042 694 ∼

R
ef
er
en

ce 1-2-6-7 788 1121 ∼ ∼ ∼ 1424 676
1-3-5-7 927 ∼ 1297 ∼ 1032 ∼ 1142
4-1-2 2761 335 ∼ 2227 ∼ ∼ ∼
4-3-2 ∼ 708 1049 1191 ∼ ∼ ∼
6-5-3-4 ∼ ∼ 458 733 861 584 ∼

Tab. 2 – Average trip lengths (m) calculated by the methods Mstandard and
Mreference.

we assume that the set of regional paths and trip lengths remain unchanged. In1

the full paper, we will consider the vehicles’ re-routing due to the control effects on2

the travel times and time-dependent trip lengths. The proportional (kp = 1) and3

integral ((ki = 0.05)) gains of the PI controller are obtained using trial and error4

methods.5

Preliminary results and discussion6

Figure 4 depicts the evolution of the vehicles’ accumulation n(t) during the simu-7

lation period T , for all seven regions. We first briefly analyze the results for the8

uncontrolled cases, that are represented by the solid curves. We observe that the9

n(t) peak between ∼3000-7000 seconds, is larger for the case of Mreference compared10

to Mstandard. This happens because the average trip lengths calculated through11

Mreference for regional paths 1 − 2 − 6 − 7 and 1 − 3 − 5 − 7 are larger than the12

ones calculated through Mstandard (see Table 2). The speed-MFD is the same for13

all vehicles traveling in region 1. Therefore, they need more time to complete their14
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Fig. 3 – Representation of closed-loop gating control using PI controllers.

trips for Mreference as the travel distance is longer, increasing the accumulation.1

The results for the controlled cases are represented by the dashed lines. We2

are gating the inflow of the three regional paths that cross region 3 (see Table 13

for the list of these regional paths). When n3(t) reaches 500 vehicles, vehicles4

start queuing in regions 1, 4 and 5. These are the previous adjacent regions to 35

in the three regional path sequences. The vehicles’ accumulation in these regions6

increases compared to the uncontrolled cases. This influences the traffic dynamics in7

the regions. This happens especially when the accumulation reaches the congestion8

branch of the MFD, where priority rules are applied.9

Figure 2 (c) depicts one demand peak per OD pair, each happening at dif-10

ferent time instants. From these three demand peaks, vehicles traveling on regional11

path 4 − 3 − 2 are the first to arrive to region 3. They are allowed to enter region 3,12

until n3(t) = 500 vehicles. The travel distances for region 3 assigned by Mreference13

are larger than the ones by Mstandard. Vehicles are then queuing for a longer period14

of time in region 4, for the case of Mreference compared to Mstandard. This leads to15

a larger accumulation for Mreference than Mstandard in region 4. The next demand16

peaks to arrive are traveling on regional paths 6 − 5 − 4 − 3 and 1 − 3 − 5 − 7,17

respectively. Since region 3 is already at its maximum targeting accumulation, ve-18

hicles traveling on these two regional paths will be queuing in regions 5 and then 1.19

This leads to larger accumulations for these two regions for the case of Mreference20

compared to Mstandard.21

These results highlight that the trip lengths calibration is very important22

and play an important role in the spreading of congestion to adjacent regions as23

well as on the regional traffic dynamics. In the full paper, we will analyse the role24

of the trip lengths estimation on the MPC.25
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Fig. 4 – Evolution of the vehicles’ accumulation n(t) for all seven regions.
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