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1 Introduction

Smartphone-based vanpool services have become an emerging trend, which has attracted much attention in the research

field [1, 2]. In smartphone-based vanpool services, passengers request vans from their smartphones for point-to-point

pickups and deliveries, and vans are dynamically routed to passengers with committed pickup and delivery times.

However, sharing vans and the dynamic nature of this service mode increases the difficulty of deploying and operating

vanpool services. There are many interesting research topics related to vanpool services, some researchers focus on the

daily planning for vanpool services, such as designed efficient scheduling algorithm, and some researchers focus on long

term planning for dynamic vanpool services, such as how to decide the optimal fleet size for a service area, the minimum

density of demand to support a vanpool services (i.e., the critical mass). This research focuses on the long term planning.

We found that most studies related to long term planning of dynamic vanpool services only consider simple scheduling

methods. The existing studies can be summarized into two categories. The first category use simulation based method

to model the operation of transportation system [3, 4, 5, 6]. In these research, the historical distribution of requests are

usually used as the input. However, these studies use simple heuristics for scheduling. They do not use future information

and do not consider the capacity of vans. The second category use approximate mathematical method[7, 8], since we

usually do not have detailed information [8]. These studies usually assume the requests is from a simple distribution,

such as uniform distribution. Similarly, only simple heuristics are considered in these studies.

From the existing studies related to daily planning of dynamic vanpool services [9, 10, 11, 12], there are some

scheduling algorithms with advanced features which can improve scheduling performance. In recent studies [13, 14, 15],

there are advanced scheduling algorithms which considers future information and prepositioning and it is found that these

advanced features can improve the scheduling performance. These scheduling advances create complexity in deployment

and have their associated requirements on input data. It is therefore of interest to quantify the impact of these scheduling

advances in long term planning.

In this research, we test scheduling algorithms with advanced features under different settings. We compare the LOS

metrics with or without looking-ahead and prepositioning to measure the impact of scheduling advances. We also test

the LOS metrics under different fleeting settings to get the response surfaces of LOS metrics (rejection, waiting time,

excess time) vs fleet size (number and capacity of vans). We then try to fit the surface and get an approximate function

to represent the relationship between LOS metrics and fleet size. With this function, we can build a generalized profit

function to balance the operating profit and the user experience. To test whether our proposed method can be used for

different service area, we run a series of sensitivity tests by mutating the demand data and road network. From these

tests, we found that the proposed method can be used for requests with different patterns. The test results also indicate

some noteworthy characteristics of our real-world request datasets.

We summarize the contributions of this research as follows:

• Different algorithm features and fleet size are tested to measure the impact of scheduling advances, we also use

functions to fit the relationship between LOS metrics and fleet size;

• According to the relationship between LOS metrics and fleet size, we build a model to predict the critical mass of

given area and a fleet planning model considering both operating profit and user experience; and

• By mutating the characteristics of request data, we find that the dataset have specific spatial pattern, and the

proposed method can be applied to new areas with different demand patterns.



2 Research framework

In smartphone-based vanpool services, the service providers use several vans to provide transportation services for

passengers within a service area. They have a smartphone app for passengers to send requests. Each request usually has

a pickup location, a delivery location, and expected pickup time. They also have a smartphone app for drivers to receive

scheduled routes and locations of requests.

There are several key factors in vanpool services. In this research, we focus on the interaction among the demand

pattern, fleet size, and level of service (LOS) metrics when using scheduling algorithms with advanced features. The

demand pattern represents the characteristics of request data, such as, the spatial and temporal distribution of requests,

and the density of requests. The demand density is the major factors which influence the load of services. And for a

specific density, if the spatial and temporal distribution of requests change, the service performance may also change.

The fleet size means the number and capacity of vans. Existing studies usually consider the number of vans but ignore

the capacity of vans. However, both of them can influence the scheduling performance and the fleet cost. The level

of service includes three aspects. The rejection ratio which is the fraction of rejected requests in all received requests.

The waiting time measures how long each passenger waits before being picked. The excess ride time ratio which is the

fraction of excess ride time in direct ride time by taxi or private car.

The goal of this research focus on the long term planning of vanpool services. When we plan to enter a new market,

we may get the request data of the new area. We need to determine whether the market can support a vanpool service

and how to determine the best fleet size for this market. We would like to know how the advanced features of the

scheduling algorithm can save cost or improve user experience. We also want to know whether the proposed method can

be used on different areas with different characteristics, since we use simulation based method on historical data to build

and test the proposed model.

The core idea of this research is response surface method from simulation based optimization. When using advanced

scheduling methods, it is difficult to get a closed form relationship between scheduling performance with fleet size. To

build a fleet size model, we can run simulation tests on different fleet size, which includes the number of vans m and the

capacity of each van Q. From the simulation result, we can get the response surface of LOS metrics against the fleet

size. We can fit the response surface and get the average rejection rate AR(Q,m), the average waiting time AW (Q,m),

and the average excess ride time ratio AE(Q,m).

After fit the response surface, we can build a generalized profit function. This function includes both operation

profit and user experience. Assume the average number of daily requests is p, the average revenue per request is r, the

value of waiting time per minute is v, the excess ride time ratio penalty is e, and the daily cost of fleet is C(Q,m). We

have the generalized daily profit as

f(Q,m) = p[1 −AR(Q,m)][r − vAW (Q,m) − eAE(Q,m)] − C(Q,m),

where p[1−AR(Q,m)] is the number of passengers served and [r− vAW (Q,m)− eAE(Q,m)] is the revenue per request

minus the value of waiting time per request and the penalty of excess ride time. Then we can use this function to find

the optimal fleet size which can optimize the generalized profit.

To find the critical mass, we need to include the demand density in our function. Since we only have a dataset

with a specific demand density. We use a simple method to create data with different density. We combine the requests

from k consecutive days and treat them as requests in one day. With this method, we can get datasets with k times



density as the original dataset. Similarly, we run simulation under these settings to get the level of service metrics and

get the average rejection rate AR(Q,m, k), the average waiting time AW (Q,m, k), and the average excess ride time ratio

AE(Q,m, k). Then generalized profit function can be modified to

f(Q,m, k) = kp[1 −AR(Q,m, k)][r − vAW (Q,m, k) − eAE(Q,m, k)] − C(Q,m),

where kp[1−AR(Q,m, k)] is the number of passengers served and [r− vAW (Q,m, k)− eAE(Q,m, k)] is the revenue per

request considering the user experience.

In existing studies about scheduling algorithms, it is found that the advanced features of scheduling algorithm, such

as looking-ahead and prepositioning, can improve the scheduling performance a lot. In this research, we would like to

measure the impact of these advanced features under different settings. Thus for the simulation tests, we set up three

groups to inspect the benefit of these advanced features: Group 1, deterministic, we set the horizon of scenarios to

zero, which means we do not consider future requests; Group 2, stochastic, we use normal horizon of scenarios and only

consider dispatching vans to received requests; and Group 3, prepositioning, we use normal horizon of scenarios and

consider sending the vans to locations with potential requests.

3 Conclusions

In this research, we test the impacts of advanced features in dynamic vanpool service scheduling algorithms. We find

that the tested advanced features, such as looking-ahead and prepositioning, can improve level of service metrics. We

propose a methods to derive the optimal fleet size and critical mass of given service areas by fitting the response surfaces

and building a generalized profit function. We use operation settings to validate the proposed model and find that the

advanced features can help to improve the generalized profit. It may be not profitable to run a dynamic vanpool service

without these advanced features. Sensitivity tests are also performed to test whether proposed methods can be used in

service areas with different demand patters and road networks.
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