
The Value of Prepositioning in Smartphone-Based Vanpool

Services Under Stochastic Requests and Time-Dependent

Travel Times

Donghui Li

Department of Industrial Engineering

Tsinghua University

Hai Jiang

Department of Industrial Engineering

Tsinghua University

Email: haijiang@tsinghua.edu.cu

Constantinos Antoniou

Department of Civil, Geo and Environmental Engineering

Technical University of Munich

Qianyan Xie

Research and Advanced Engineering

Ford Motor Company

Wei Shen

Asia Pacific Research

Ford Motor Company

Weijian Han

Research and Advanced Engineering

Ford Motor Company

1 Introduction

Smartphone-based vanpool services have become an emerging trend, which has attracted much attention in the

research field [1, 2], and have been made available around the world. In smartphone-based vanpool services, passengers

request vans from their smartphones for point-to-point pickups and deliveries, and vans are dynamically routed to

passengers with committed pickup and delivery times. One of the fundamental issues in smartphone-based vanpooling

is to schedule a fleet of vans to serve passengers efficiently, which corresponds to the classical dial-a-ride problem

(DARP) and its many variants have been investigated extensively in the literature [2]. The dynamic and stochastic

DARP is the most realistic one for dynamic vanpool services since it considers both dynamic requests and future

stochastic information [3, 4].

One of the major limitations of existing literature is that when a vehicle is dispatched, it is limited to pickup

and delivery locations of received requests. The operator would not preposition a vehicle to locations where future

demand may appear. FIGURE 1 is an example to demonstrate the benefits of prepositioning. Assume that the

current time is 10:00, we have one van available in this area, and the van is now empty. We have received two

requests, one is from A to A′, and the other one is from B to B′. Suppose there is a high probability that we will

receive a request from C to C ′ in the next 10 minutes. Due to the limit of waiting time, we can only choose one of

these requests under current traffic conditions. Existing literatures only consider sending the van to A or B, and use

the stochastic information of future requests and traffic conditions to evaluate these decisions. If prepositioning is

considered, we will also consider sending the van to C. This decision can lead to high profit, when the probability of

receiving this request is high.

A

A′

B B′

C

C′

$10

$10

$30
10: 10

10: 10

10: 10

Figure 1: An example to demonstrate the benefits of prepositioning.

We develop a metaheuristic scheduling algorithm for the dynamic and stochastic DARP. The algorithm uses

multiple scenarios which include future requests and traffic conditions to generate and evaluate each potential decision.

Prepositioning is considered in this algorithm. We use a real dataset, which includes requests from Pandabus in

Dalian and travel speed data achieved from a map service provider, to test our algorithm. The results show that

incorporating stochastic requests without considering prepositioning can improve the average profit by 18.6%. And

the prepositioning improves the average profit by 23.8% and reduces the average waiting time by 74.7%.

2 Problem Description

Our research problem comes from Pandabus, which operates a pilot dynamic vanpool service in Dalian, China. They

use several vans to provide transportation services for passengers within a service area. They have a smartphone app

for passengers to send requests. Each request has a pickup location, a delivery location, and expected pickup time.

They also have a smartphone app for drivers to receive scheduled routes and locations of requests.

They need an online scheduling algorithm to decide whether to accept each request and how to route each van.

We model this problem as a DARP. R = {r1, r2, · · · } is the set of requests, which is being updated during the

operation to include newly received requests. Each request ri has its pickup node rpi , delivery node rdi , status rsi

which can be new, rejected, waiting for pickup, picked, or delivered, route rvi which is the index of the van picking this

request. Each request ri has a pickup time window [erpi , lr
p
i
] and a delivery time window [erdi , lrdi]. We use the pickup

time window to ensure passengers’ expected pickup time and use the delivery time window to limit maximum detour.

For the pickup time window, we set erpi as passenger’s expected pickup time, and lrpi = erpi +uw, where uw represents

the maximum allowed waiting time. For the delivery time window, we set erdi = erpi , and lrdi = lrpi + udDTT (rpi , r
d
i),

where ud represents the maximum allowed detour ratio and DTT (rpi , r
d
i) is the direct travel time between the pickup

and the delivery node under average travel speed.

We use scenarios to represent the stochastic information about future requests and traffic conditions. Sr(t) =

{sr1(t), sr2(t), · · · } is the set of request scenarios we use at time t. Ss(t) = {ss1(t), ss2(t), · · · } is the set of travel speed

scenarios we use at time t. S(t) = {s1(t), s2(t), · · · }, where sk(t) = 〈srk(t), ssk(t)〉, is the set of scenarios we use at

time t, which combines request scenarios and travel speed scenarios. The goal of this research is to design an online

scheduling algorithm to optimize the operating profit and the user experience. The operating profit is calculated as

the operating cost minus the service revenue. The user experience includes the waiting time and the detour. In our

implementation, the objective function is a linear combination of the cost, the revenue, the waiting, and the detour.

3 Solution Methods

To develop and test the scheduling algorithm, we need a simulation framework which provides a simulated online

environment. It simulates the arrival of new requests, movement of vans and calls the scheduling procedure when

needed, such as when new requests arrive or after a given time interval. The scheduling procedure uses scenario-based

approaches to decide whether to accept each new request and design schedules for each van. For each given scenario,

we need to solve a deterministic problem and this is done by a tabu search algorithm. In this abstract, we concentrate

on the scheduling procedure. The scheduling procedure gets the following inputs: (1) the set of vans V which includes

the position of each van; (2) the set of requests R which includes newly received requests and accepted requests with

their status, such as, whether the request is picked or not, which van the request in on. The scheduling procedure

first decides whether to accept each new request, then decides the routes of each van.

In the first step, to decide whether to accept each request, the brief idea is to compare the expected objective

function value when accepting the request with the one when rejecting the request. To achieve this goal, we develop

an evaluation procedure as shown in Figure 2. In this evaluation procedure, we need to input the current state

of vans and requests, state(t). The evaluation procedure estimates the average objective function value of current

state. It loops through each scenario sk(t) ∈ S(t). With a given scenario sk(t), the stochastic problem becomes a

deterministic problem. Tabu search is used to solve the deterministic DARP under the given state and scenario,

which gives an optimal objective function value objk(t) under each scenario. We use the average value of these

objective function values under different scenarios to represent the expected objective function value of current state.

With this evaluation procedure, we first mark the request as rejected and use the evaluation procedure to evaluate

the average objective function value under given state, denoted as objrejected. Then we mark the request as accepted

and insert it into a random route, run the evaluation procedure again, and get objaccepted. If objrejected > objaccepted

we reject the request, otherwise we accept it.

state(t)

s1(t)

sk(t)

sl(t)

obj1(t)

objk(t)

objl(t)

obj(t)

Solve Average

...

...

Figure 2: Illustration of the evaluation procedure.

In the second step, to decide the route of each van, we develop a scenario-based search to generate and evaluate

potential decisions. The main idea is demonstrated in Figure 3. Similarly, the state(t) represent the current state

of the system. In each iteration of the loop, we select a scenario sk(t) ∈ S(t). We can use tabu search to find the

optimal decision for the given state and scenario. For each scenario sk(t) we can get an optimal decision, denoted as

decisionk(t), which we call a candidate decision. Because sk(t) includes potential future requests, in some candidate

decisions, the vans may be dispatched to future requests if this can lead to a better solution. After generating

candidate decisions, we need to evaluate these decisions and choose a final decision. For each decisionk(t), we first

update the state according to the decision. By doing this, we get a new state statek(t + ∆t) which represents the

consequence of executing the decision. Then we use the evaluation procedure to loop through scenarios again to get

an expected objective function value objk(t+∆t) of the candidate decision. Finally, we choose the candidate decision

with the best expected objective function value as our final decision.

state(t)

s1(t)

sk(t)

sl(t)

decision1(t)

decisionk(t)

decisionl(t)

decision(t)

obj1(t + ∆t)

objk(t + ∆t)

objl(t + ∆t)

state1(t + ∆t)

statek(t + ∆t)

statel(t + ∆t)

Update EvaluateSolve Select the best decision

...

...

...

...

...

...

Figure 3: Illustration of the scenario-based search.

4 Numerical Experiments

Our request dataset comes from Pandabus. The dynamic vanpool service is run in a 5 km × 5 km service area which

includes business and residential areas. We have historical requests in September 2016, which includes 20 work days.

There are 4 vans running in this area, each van has 17 seats. The average number of daily requests is 163.5 and the

average travel distance between pickup and delivery locations is 3.17 km. In the following tests. If it is not stated,

we set the ticket price as 1 Chinese Yuan / km, the fuels cost as 0.5 Chinese Yuan / km, which are estimated from

actual service price and cost. We set the maximum allowed waiting as 10 min and the maximum allowed detour ratio

as 1.4, which are estimated according to the current operation.

We use multiple scenarios to represent the stochastic distributions of future requests and travel times. These

scenarios can be generated according to forecasting models. Since this research does not focus on requests and travel

time forecasting, we implement a simple method to generate scenarios. Each scenario is generated directly from

the data of one historical day. For example, travel speed scenario ssk(t) is the travel speed of one historical day.

For request scenario srk(t), we use a parameter H to limit the horizon of future requests to guarantee the running

performance. srk(t) contains all requests received between (t, t + H] during one historical day. The algorithm is

implemented with C++ and tested on a computer with i7-4790K 4.0GHz CPU and 16GB RAM.

We use the following metrics to measure the scheduling performance: (1) daily profit which is the difference

between daily revenue from ticket price and daily cost of fuels, (2) average waiting time which is the average value

of each passenger’s waiting time between expected pickup time and actual pickup time, and (3) average detour ratio

which is the average value of each passenger’s detour ratio, where the detour ratio is the ratio between actual travel

time and average direct travel time between the pickup and delivery locations.

Both stochastic requests and travel times are considered in this research. We set up multiple tests to measure

the benefits of considering stochastic requests in our algorithm. The improvements of considering stochastic requests

in this research can be divided into these two aspects: the first one is stochastic, which means that we use multiple

scenarios with future requests to generate and evaluate candidate decisions; and the second one is prepositioning,

which means that we consider sending the vans to locations with potential requests. We set up the following tests to

inspect the benefit of these two aspects respectively: Test 1, deterministic, we set the horizon of scenarios to zero,

which means we do not consider future requests; Test 2, stochastic, we set the horizon of scenarios to 15 min and

only consider dispatching vans to received requests; and Test 3, prepositioning, we set the horizon of scenarios to 15

min and consider sending the vans to locations with potential requests. Stochastic time-department travel times are

considered in all of these tests.

We run these tests with perfect request scenarios. Perfect request scenarios mean that the request scenarios

contain the real requests from the corresponding date. For example, in the test of 2016-09-01, the scenarios are

generated from the historical data of this date. We use this way to demonstrate the scheduling performance when we

have very accurate forecast. From the average differences of these tests, we can find that considering future requests

(without prepositioning) improves the average profit by 18.6%. And the prepositioning improves the average profit

by 23.8% and reduces waiting time by 74.7%. However, we may not have perfect forecast in the practice. Thus we run

tests with scenarios generated from two historical days. From the average differences, we can find that considering

future requests (without prepositioning) improves the average profit by 14.0%. And the prepositioning improves the

average profit by 10.1% and reduces waiting time by 55.9%.

We also do similar tests for stochastic time-dependent travel times. However, the performance of these tests

does not have significant differences. These may be because the traffic conditions in the service area are good and

considering stochastic time-dependent travel times does not have significant improvements under this circumstance.

5 Conclusion

In this research, we develop a scheduling algorithm for dynamic vanpool services considering both stochastic requests

and stochastic time-dependent travel times using scenario-based search and tabu search. Prepositioning is considered

in the algorithm. We use a real dataset which includes requests from our partner in Dalian and travel speed data

achieved from a map service provider. The results show that incorporating stochastic requests can improve the

solution quality significantly, especially that prepositioning can increase profit and reduce waiting time significantly.

References

[1] M Grazia Speranza. Trends in transportation and logistics. European Journal of Operational Research,

264(3):830–836, 2018.

[2] Sin C Ho, WY Szeto, Yong-Hong Kuo, Janny MY Leung, Matthew Petering, and Terence WH Tou. A survey

of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Method-

ological, 2018.

[3] Michael Schilde, Karl F Doerner, and Richard F Hartl. Metaheuristics for the dynamic stochastic dial-a-ride

problem with expected return transports. Computers & Operations Research, 38(12):1719–1730, 2011.

[4] Michael Schilde, Karl F Doerner, and Richard F Hartl. Integrating stochastic time-dependent travel speed in

solution methods for the dynamic dial-a-ride problem. European Journal of Operational Research, 238(1):18–30,

2014.

[5] Suleyman Karabuk. A nested decomposition approach for solving the paratransit vehicle scheduling problem.

Transportation Research Part B: Methodological, 43(4):448–465, May 2009.

[6] Fabien Lehud, Renaud Masson, Sophie N. Parragh, Olivier Pton, and Fabien Tricoire. A multi-criteria large

neighbourhood search for the transportation of disabled people. Journal of the Operational Research Society,

65(7):983–1000, July 2014.

[7] Thomas Hanne, Teresa Melo, and Stefan Nickel. Bringing robustness to patient flow management through

optimized patient transports in hospitals. Interfaces, 39(3):241–255, 2009.

[8] Sophie N Parragh. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride

problem. Transportation Research Part C: Emerging Technologies, 19(5):912–930, 2011.

[9] Sophie N Parragh, Jorge Pinho de Sousa, and Bernardo Almada-Lobo. The dial-a-ride problem with split

requests and profits. Transportation Science, 49(2):311–334, 2014.

[10] Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L Medaglia. A review of dynamic vehicle routing

problems. European Journal of Operational Research, 225(1):1–11, 2013.

[11] Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle dial-a-ride

problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.

[12] Sophie N Parragh and Verena Schmid. Hybrid column generation and large neighborhood search for the dial-a-

ride problem. Computers & Operations Research, 40(1):490–497, 2013.

[13] Ulrike Ritzinger, Jakob Puchinger, and Richard F Hartl. Dynamic programming based metaheuristics for the

dial-a-ride problem. Annals of Operations Research, 236(2):341–358, 2016.

[14] Ying Luo and Paul Schonfeld. Online rejected-reinsertion heuristics for dynamic multivehicle dial-a-ride problem.

Transportation Research Record: Journal of the Transportation Research Board, (2218):59–67, 2011.

[15] Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. A hybrid tabu search and constraint pro-

gramming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing, 24(3):343–355,

2012.

