

A Relocation Strategy for Munich's Bike Sharing System

mobil.TUM 2016 June 7th

INSTITUTE FOR TRAFFIC, TRANSPORT AND REGIONAL PLANNING M. SC. MATH. SVENJA REIß

Overview

- Bike Sharing System "Call a Bike"
- ✤ Launched in Munich in 2001
- Around 1200 bikes available
- Aricing: 1€ / 30min
- Non-station-based, but "free-floating"

What does Universität München "free-floating" mean?

The Operating Area

- Renting/returning is allowed everywhere inside of the blue area
- Bikes are equipped with GPS devices
- Renting is possible via smartphone-app or phone call

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

Validation

•Estimating the impact and value of fleet relocations

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

der Bundeswehr Universität 🏠 München

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

Validation

•Estimating the impact and value of fleet relocations

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

and investigating different time slots

and different mobility patterns during

- **workdays and weekends**
- time of the day
- and dividing the operating area in zones

 Commuter peaks in the morning and evening

10

usage per hour in percent

6

л

2

10

usage per hour in percent

6

2

0

0:50

0:43

0:36

0:28

0:21

0.14

0:00-6:00

6:00-10:00

20:00-24:00

- weekends for leisure
 - Short trips on workdays esp. in the morning

16:00-20:00

Institute for Transport, Traffic & Regional Planning University of the Federal Armed Forces M.Sc. Math. Svenja Reiss

10:00-16:00

—weekdays —weekends

Idle Times

~25% is in motion permanently

Idle Times

~30% of the fleet is idling longer than 12 hours!

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

Validation

•Estimating the impact and value of fleet relocations

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

Demand Model

Demand Model

Demand according to:

⇒ These factors determine the demand for each zone and every time interval

Demand Model

The model is based on

- to current stock and rentals per zone
- ♂ O/D-relations
- 375 idle times per zone
- Deviation between actual distribution and calculated *perfect* distribution are needed relocation steps

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

7

Validation

•Estimating the impact and value of fleet relocations

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

Relocation Strategy

- The demand model provides a *perfect fleet* distribution for each time slot
- Deviation between actual distribution and calculated *perfect* distribution are needed relocation steps
- Minor relocations can be done by users themselves:

Relocation Strategy

der Bundeswehr Universität

Data Analysis

 Spatio-temporal booking patterns

Detection of fleet imbalances

7

Validation

•Estimating the impact and value of fleet relocations

Demand Model

•Estimates the demand at different time slots

perfect fleet distribution

Relocation Strategy

Operator-based

User-based

 More bikes generate up to 50 trips more per time slice

Validation in zone 29 "Universität" Rentals Stock 0:00-6:00 6:00-10:00 10:00-16:00 16:00-20:00 20:00-24:00 Stock "Day badly distributed" Stock "Day well distributed" Stock according to model — Rentals "Day badly distributed" — Rentals "Day well distributed"

Key Findings

- Fleet imbalances occur esp. after public holidays or weekends
- Relocations have a huge impact on following bookings
- Adding a user-based strategy (discount) is very cost and time-efficient
- By relocations the system gets more attractive for users and more economic for the operator

Thanks for listening!