
    

Inventory Routing for Bike Sharing Systems 

 
mobil.TUM 2016 – Transforming Urban Mobility 

Technische Universität München, June 6-7, 2016 

 

Jan Brinkmann, Marlin W. Ulmer, Dirk C. Mattfeld 

 

 



mobil.TUM 2016 | Inventory Routing for Bike Sharing Systems | Jan Brinkmann | Slide 2 

Agenda 

 Motivation 

 

 Problem Definition 

 

 Two-dimensional Decomposition Approach 
 

 Temporal Dimension 
 

 Spatial Dimension 

 

 Case Studies 

 

 Summary and Outlook 

 

 

 



mobil.TUM 2016 | Inventory Routing for Bike Sharing Systems | Jan Brinkmann | Slide 3 

Motivation: Bike-Sharing Systems 

 Public bike rental 

 

 Short usage time 

 

 One-way trips 

 

 Trips, i.e., 

 Rental request 

 Return request 

 

 Spatio-temporal 

variation of 

requests 
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Motivation 

 Problem 
 

 Discrepancy of rental and return requests lead stations either to 

congest or to run out of bikes. 
 

 Rental requests fail at empty stations. 
 

 Return requests fail at full stations. 
 

 Provider‘s view 
 

 Needs to satisfy as many requests as possible. 
 

 Relocates bikes via transport vehicles. 
 

 Draws on target intervals provided by external information systems. 
 

 Challenges 
 

 Interdependent delivery amounts, due to balancing contraints. 
 

 Interdependent replenishment times, due to routing. 
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Problem Definition: Inventory Routing 

Transportation 
i.e., relocations 

Routing 
i.e., sequence 

Inventory 
i.e., fill level 
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Problem Definition: Sets and Functions 

 Bike Sharing System 

 Set of stations: 𝑁 = 𝑛0, … , 𝑛𝑚𝑎𝑥  

 Capacity:  𝑟: 𝑁 → ℕ0 

 Initial fill levels: f: 𝑁 → ℕ0 

 Distances:  𝑑: 𝑁 × 𝑁 → ℝ+ 

 Bikes:  𝐵 = {𝑏0, … , 𝑏𝑚𝑎𝑥} 
 Planning horizon: 𝑇 = {𝑡0, … , 𝑡𝑚𝑎𝑥} 

 

 Expected user activities 

 Rental:  𝑅− = 𝑟0
−, … , 𝑟𝑚𝑎𝑥

−   𝑟 
− = (𝑡, 𝑛)  

 Return:  𝑅+ = 𝑟0
+, … , 𝑟𝑚𝑎𝑥

+   𝑟+ = 𝑡, 𝑛  

 

 Target Intervals 

 Upper Limits  𝜏: 𝑁 × 𝑇 → ℕ0 

 Lower Limits  𝜏: 𝑁 × 𝑇 → ℕ0 
 

 Optimization 

 Set of vehicles: 𝑉 = 𝑣𝑜, … , 𝑣𝑚𝑎𝑥  

 Capacity:  𝑐: 𝑉 → ℕ 

 Relocation operations 

 Pickups: 𝑃 = {𝑝0, … , 𝑝𝑚𝑎𝑥}  𝑝 = (ℎ, 𝑛, 𝑏) 

 Deliveries: 𝐷 = {𝑑0, … , 𝑑𝑚𝑎𝑥}  𝑑 = (ℎ, 𝑛, 𝑏) 
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Problem Definition: Fill Levels and Target Intervals 

100% 

𝑛3 

0% 

target 

interval 

100% 

𝑛1 

0% 

target 

interval 

100% 

𝑛2 

target 

interval 

0% 

In the presence of large gaps, we assume a high probability of unsatisfied requests. 
 

Objective: Minimize the squared gaps over all stations. 
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Two-dimensional Decomposition Approach 

 

Divide the IRP into several subproblems. 

 

 

 Temporal dimension 
 

 Divide planning horizon into periods. 

 Solve periods sequentially 

 

 

 Spatial dimension 
 

 Divide set of stations into subsets 

 Assign each subset to one vehicle 

 For each vehicle / subset, determine a tour and relocation operations 

 

 

 Challenge: Find proper subsets allowing efficient rebalancing. 
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Spatial Decomposition: Set Partitioning 

Subsets 

Neighborhood Routing 

Operator Decision 

Generate proper subsets via iterative local search proceedure: 
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Spatial Decomposition: Operators 

 

Operators span a neighborhood around a current solution. 

 

 Insert 
 

 Removes one station from it‘s subset. 

 Inserts these station in an other subset. 
 

 ⇒ Small neighborhood 

 ⇒ Can change subsets‘ sizes 

 

 Exchange 
 

 Removes two stations from their subsets. 

 Exchanges station‘s assignments. 
 

 ⇒ Large neighborhood 

 ⇒ Cannot change subsets‘ sizes 

 
 

Operator 
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Spatial Decomposition: Routing 

𝑑 =  2 𝑑 =  2 

? 
𝑔𝑎𝑝 =  2 𝑔𝑎𝑝 =  1 

𝜌 =
2 

2
= 1 

𝜌 =
𝑔𝑎𝑝

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

𝜌 =
1 

2
= 0.5 

Routing 

target 

interval 

target 

interval 

𝑛1 𝑛2 

Routing evaluates subsets. 
 

Adapted Nearest Neighbor: 
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Spatial Decomposition: Routing Routing 

target 

interval 

target 

interval 
𝜌 =

𝑔𝑎𝑝

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

𝑛1 𝑛2 

𝑔𝑎𝑝 =  1 𝑔𝑎𝑝 = 0 

Routing evaluates subsets. 
 

Adapted Nearest Neighbor: 
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Spatial Decomposition: Decison Making Decision 

 

Choosing new solutions from the current solutions neighborhood. 

 

 
 Hill Climbing 

 

 Chooses the best subsets in the current neighborhood for next iteration 
 

 ⇒ Terminates in a local optimum 

 

 
 Simulated Annealing 

 

 For further exploitation, chooses randomly subsets from the current neighborhood 

 Accepts (inferior) subsets with probability 𝜙 ≔  min 1, exp
Ο𝑐−Ο𝑛

Τ
 

 Returns best subsets found 
 

 ⇒ Overcomes local optimality 
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Case Studies: Instances 

 Vienna‘s BSS „City Bike Wien“ 

 59 stations 

 Station capacity of 10-40 bike racks 

 ~1,569 trips per day extracted by Vogel (2016) 
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Case Studies: Instances 

 Vienna‘s BSS „City Bike Wien“ 

 59 stations 

 Station capacity of 10-40 bike racks 

 ~1,569 trips per day extracted by Vogel (2016) 

 

 24 time periods à 60min 

 

 Target fill levels by Vogel et al. (2014) 

 

 2, 3, 4, and 8 Vehicles 

 

 Vehicle speed of 15
𝑘𝑚

ℎ
 

 

 Vehicle capacity of 10 
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Case Studies: Results 

 
 

Vehicles 

2 3 4 8 

Hill Climbing 211.45 86.09 65.24 57.74 

Simulated Annealing 171.99 69.98 52.77 49.83 

 

Algorithm selection: 

 

 

 

 

 

 

 

 

 

 

⇒ Simulated Annealing outperforms Hill Climbing. 
 

⇒ Simulated Annealing considering 8 vehicles leads to minor improvements. 
 

⇒ Further analysis of results by Simulated Annealing with 4 vehicles. 
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Case Studies: Results 
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Results for Simulated Annealing and four vehicles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ Expect for afternoon rushhour stations can be keept balanced. 
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Case Studies: Results 
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Results for Simulated Annealing and four vehicles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ Pick-ups before the rushhour. 
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Case Studies: Results 
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Results for Simulated Annealing and four vehicles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ Deliveries before the afternoon rushhour. 
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Summary and Outlook 

 

 Inventory Routing Problem 

 

 Goal: realize target fill levels 

 

 Two-dimensional decomposition approach: 
 

 Solved periods independently 
 

 Finds subsets allowing efficient rebalancing 

 

 

 Future research 
 

 To count failed request directly, evaluate 

approach in stochastic-dynamic environment. 
 

 

                            Thank you! 

 

Transport Routing 

Inventory 
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Motivation: Spatio-temporal Variation of Requests 
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Motivation: Spatio-temporal Variation of Requests 
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Spatial Decomposition: Decison Making Decision 

Choosing new solutions from the current solutions neighborhood. 

 
 Hill Climbing 

 

 While current solution is no local optimum: 

 Choose the best solution in the current solution‘ neighborhood. 

 Return current solution. 
 

 ⇒ Terminates in a local optimum 

 
 Simulated Annealing 

 

 Initialize Τ0. 

 While  Τ < Τ𝑚𝑖𝑛: 

 Choose a random solution in the current solution‘s neighborhood. 

 Accept solution with probability 𝜙 ≔  min 1, exp
Ο𝑐−Ο𝑛

Τ
. 

 Set Τ𝑖+1 ≔ 𝑐 ⋅ Τ𝑖  . 
 Return best solution found. 

 

 ⇒ Overcomes local optimality 
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Case Studies: Results 

 
 

Vehicles 

2 3 4 8 

no optimization via local search 842.07 754.40 779.96 1,088.18 

H
ill

 C
lim

b
in

g
 

Insert 242.10 97.86 71.66 60.34 

Exchange 248.79 113.87 96.61 106.22 

Insert / Exchange 211.45 86.09 65.24 57.74 

 

Operator selection: 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ No optimization via local search leads to worse results. 
 

⇒ Combination of Insert and Exchange leads to best results. 
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