

# **Inventory Routing for Bike Sharing Systems**

mobil.TUM 2016 – Transforming Urban Mobility
Technische Universität München, June 6-7, 2016

Jan Brinkmann, Marlin W. Ulmer, Dirk C. Mattfeld

## **Agenda**

- Motivation
- Problem Definition
- Two-dimensional Decomposition Approach
  - Temporal Dimension
  - Spatial Dimension
- Case Studies
- Summary and Outlook



## **Motivation: Bike-Sharing Systems**

- Public bike rental
- Short usage time
- One-way trips
- Trips, i.e.,
  - Rental request
  - Return request
- Spatio-temporal variation of requests



#### **Motivation**

#### Problem

- Discrepancy of rental and return requests lead stations either to congest or to run out of bikes.
- Rental requests fail at empty stations.
- Return requests fail at full stations.

#### Provider's view

- Needs to satisfy as many requests as possible.
- Relocates bikes via transport vehicles.
- Draws on target intervals provided by external information systems.

#### Challenges

- Interdependent delivery amounts, due to balancing contraints.
- Interdependent replenishment times, due to routing.



# **Problem Definition: Inventory Routing**





## **Problem Definition: Sets and Functions**

Bike Sharing System

• Set of stations: 
$$N = \{n_0, ..., n_{max}\}$$

■ Capacity: 
$$r: N \to \mathbb{N}_0$$
  
■ Initial fill levels:  $f: N \to \mathbb{N}_0$ 

■ Distances: 
$$d: N \times N \to \mathbb{R}^+$$

Bikes: 
$$B = \{b_0, ..., b_{max}\}$$
Planning horizon:  $T = \{t_0, ..., t_{max}\}$ 

Expected user activities

• Rental: 
$$R^- = \{r_0^-, ..., r_{max}^-\}$$
  $r^- = (t, n)$ 

• Return: 
$$R^+ = \{r_0^+, ..., r_{max}^+\}$$
  $r^+ = (t, n)$ 

Target Intervals

■ Upper Limits 
$$\overline{\tau}: N \times T \to \mathbb{N}_0$$
  
■ Lower Limits  $\tau: N \times T \to \mathbb{N}_0$ 

Optimization

• Set of vehicles: 
$$V = \{v_o, ..., v_{max}\}$$

• Capacity: 
$$c: V \to \mathbb{N}$$

Relocation operations

Pickups: 
$$P = \{p_0, ..., p_{max}\}$$
  $p = (h, n, b)$ 
Deliveries:  $D = \{d_0, ..., d_{max}\}$   $d = (h, n, b)$ 

# **Problem Definition: Fill Levels and Target Intervals**



In the presence of large gaps, we assume a high probability of unsatisfied requests. **Objective:** Minimize the squared gaps over all stations.



## **Two-dimensional Decomposition Approach**

Divide the IRP into several subproblems.

#### Temporal dimension

- Divide planning horizon into periods.
- Solve periods sequentially

#### Spatial dimension

- Divide set of stations into subsets
- Assign each subset to one vehicle
- For each vehicle / subset, determine a tour and relocation operations
- Challenge: Find proper subsets allowing efficient rebalancing.



# **Spatial Decomposition: Set Partitioning**

Generate proper subsets via iterative local search proceedure:





## **Spatial Decomposition: Operators**

Operators span a neighborhood around a current solution.

#### Insert

- Removes one station from it's subset.
- Inserts these station in an other subset.
- ⇒ Small neighborhood
- ⇒ Can change subsets' sizes

#### Exchange

- Removes two stations from their subsets.
- Exchanges station's assignments.
- ⇒ Large neighborhood
- ⇒ Cannot change subsets' sizes



Routing evaluates subsets.

Adapted Nearest Neighbor:



target interval

$$gap = 2$$

$$\rho = \frac{2}{2} = 1$$















$$\rho = \frac{1}{2} = 0.5$$





A A A A A A A A A A A

 $n_1$ 

Routing evaluates subsets.

Adapted Nearest Neighbor:



$$gap = 0$$



$$gap = 1$$



 $n_1$ 

₫**₽** 

\$\frac{1}{2}\$

\$\frac{1}{2}\$



 $n_2$ 

## **Spatial Decomposition: Decison Making**

Choosing new solutions from the current solutions neighborhood.

#### Hill Climbing

- Chooses the best subsets in the current neighborhood for next iteration
- ⇒ Terminates in a local optimum

#### Simulated Annealing

- For further exploitation, chooses randomly subsets from the current neighborhood
  - Accepts (inferior) subsets with probability  $\phi \coloneqq \min \left\{ 1, \exp \left( \frac{O_c O_n}{T} \right) \right\}$
- Returns best subsets found
- ⇒ Overcomes local optimality

#### **Case Studies: Instances**

- Vienna's BSS "City Bike Wien"
  - 59 stations
  - Station capacity of 10-40 bike racks
  - ~1,569 trips per day extracted by Vogel (2016)

## **Trips in the Course of the Day**





## **Case Studies: Instances**

- Vienna's BSS "City Bike Wien"
  - 59 stations
  - Station capacity of 10-40 bike racks
  - ~1,569 trips per day extracted by Vogel (2016)
- 24 time periods à 60min
- Target fill levels by Vogel et al. (2014)
- 2, 3, 4, and 8 Vehicles
- Vehicle speed of  $15 \frac{km}{h}$
- Vehicle capacity of 10



#### Algorithm selection:

|                     | Vehicles |       |       |       |  |  |
|---------------------|----------|-------|-------|-------|--|--|
|                     | 2        | 3     | 4     | 8     |  |  |
| Hill Climbing       | 211.45   | 86.09 | 65.24 | 57.74 |  |  |
| Simulated Annealing | 171.99   | 69.98 | 52.77 | 49.83 |  |  |

- ⇒ Simulated Annealing outperforms Hill Climbing.
- ⇒ Simulated Annealing considering 8 vehicles leads to minor improvements.
- ⇒ Further analysis of results by Simulated Annealing with 4 vehicles.



Results for Simulated Annealing and four vehicles:



⇒ Expect for afternoon rushhour stations can be keept balanced.



Results for Simulated Annealing and four vehicles:



⇒ Pick-ups before the rushhour.



Results for Simulated Annealing and four vehicles:



⇒ Deliveries before the afternoon rushhour.



## **Summary and Outlook**

- Inventory Routing Problem
- Goal: realize target fill levels
- Two-dimensional decomposition approach:
  - Solved periods independently
  - Finds subsets allowing efficient rebalancing



- Future research
  - To count failed request directly, evaluate approach in stochastic-dynamic environment.

# Thank you!



## **Motivation: Spatio-temporal Variation of Requests**





Vogel et al. (2011)

## **Motivation: Spatio-temporal Variation of Requests**





Vogel et al. (2011)

## **Spatial Decomposition: Decison Making**

Choosing new solutions from the current solutions neighborhood.

#### Hill Climbing

- While current solution is no local optimum:
  - Choose the best solution in the current solution neighborhood.
- Return current solution.
- ⇒ Terminates in a local optimum

#### Simulated Annealing

- Initialize T<sub>0</sub>.
- While  $T < T_{min}$ :
  - Choose a random solution in the current solution's neighborhood.
  - Accept solution with probability  $\phi \coloneqq \min \left\{ 1, \exp \left( \frac{O_c O_n}{T} \right) \right\}$ .
  - Set  $T_{i+1} := c \cdot T_i$ .
- Return best solution found.
- ⇒ Overcomes local optimality



#### Operator selection:

|               |                                  | Vehicles |        |        |          |  |  |
|---------------|----------------------------------|----------|--------|--------|----------|--|--|
|               |                                  | 2        | 3      | 4      | 8        |  |  |
|               | no optimization via local search | 842.07   | 754.40 | 779.96 | 1,088.18 |  |  |
| Hill Climbing | Insert                           | 242.10   | 97.86  | 71.66  | 60.34    |  |  |
|               | Exchange                         | 248.79   | 113.87 | 96.61  | 106.22   |  |  |
|               | Insert / Exchange                | 211.45   | 86.09  | 65.24  | 57.74    |  |  |

- ⇒ No optimization via local search leads to worse results.
- ⇒ Combination of Insert and Exchange leads to best results.



#### References

- Vogel P, Greiser T, Mattfeld DC (2011) Understanding bike-sharing systems using data mining: exploring activity patterns. Procedia-Social and Behavioral Sciences, 20:514-523.
- Vogel P, Neumann Saavedra BA, Mattfeld DC (2014) A hybrid metaheuristic to solve the resource allocation problem in bike sharing systems. Hybrid Metaheuristics. Lecture Notes in Computer Science, 8457:16-29, Springer.
- Vogel P (2016) Service Network Design of Bike Sharing Systems Analysis and Optimization. Lecture Notes in Mobility, Springer.