Building Up Demand-Oriented Charging Infrastructure for Electric Vehicles in Germany

Knowledge for Tomorrow

mobil.TUM 2016 6-7 June 2016, Munich, Germany

Tamer Soylu, John Anderson, et al.

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

LADEN2020

Objective:

- Development of a systematically comprehensible and consistent strategy to build a charging infrastructure for E-Vehicles in Germany.
- Main assumption: **1 Million** registered E-Vehicles by 2020.

Projekt Partners:

- DLR
 - Insitut für Fahrzeugkonzepte (FK)
 - Institut für Verkehrsforschung (VF)
- KIT
 - Institute for Transport Studies (IfV)

Funding Institution:

• Federal Ministry for Economic Affairs and Energy

Long-distance travel – Charging infrastructure

Long Distance Travel – Charging Infrastructure: Methodology

- Usage patterns of conventional vehicles
- Trip length distributions of long distance trips by car
- Calculation of different travel demand levels with respect to temporal effects (different days of the week, holidays etc.)

Car use model of conventional vehicles in LD-travel Spatial as well as temporal resolution and distribution of travel demand

- Network characteristics
- Assignment of the total demand for charging on the LD-network (no commuting)

Traffic Assigment on a network model

- Scenarios for the future fleet of electric vehicles (shares of BEVs / PHEVs, etc...)
- Vehicle and charging infrastructure characteristics (ranges, capacities of batteries, charging durations, charging currents, ...)

Characteristics of future Electromobility

Estimation of the charging demand and spatial assignment of charging infrastructure

Car Usage Patterns and Long Distance Travel Demand

Network and Traffic Model

Data:

- VALIDATE (PTV Group) fine-scaled zone and networkmodel
 - about 10.000 traffic zones
 - about 2 Mio. nodes
- Demand on workdays (Tuesday – Thursday)
 - ca. 120 Mio. car-trips
 - ca. 8 Mio. O-D-relations

Car Usage Patterns and Long Distance Travel Demand

• Effects of seasonality on travel demand (Weekday vs. Weekend):

Input data for Travel Demand Modelling:

- Trip Length distributions from:
 - VALIDATE, MOP and CUMILE
- Different temporal resolution

Solution:

 Scaling factors for the demand on weekends and holiday seasons are calculated

Car Usage Patterns and Long Distance Travel Demand

• 1 Million EV within German car fleet - assuming a usage behaviour like "conventional cars"*.

* Based on the CUMILE- Model (Car Usage Model Integrating Long Distance Events) developed in KIT – IfV.

- Input data:
 - Assumption: 1 Mio. E-vehicles (1/3 BEV, 2/3 PHEV)
- Assumptions:
 - BEV: 200 km range
 - PHEV: 40 km electric range
 - State of Charge (SOC): 100 % at start
 - Recharging required at 20 % SOC
 - Fast charging up to 80 % of capacity within 30 minutes

• Simulation

00:00:00

- Translation of Charging Demand into Infrastructure Demand:
- Illustration of Charging Events as Charging Density:
 - $CD = \frac{\# Charging Events}{100 \ km}$

• Effect of various BEV Ranges on infrastructure demand:

Number of Charging Events on High- and Federalways

- F2 (MOP-VALIDATE Weekend) F3 (Seldom Events)
- CLR Karlsruhe Institute of Technology

 Continuous Count Stations and Annual Profiles
Continuous Count Stations (BASt 2013)

Daily travel – Charging infrastructure

Daily travel – Charging infrastructure: Methodology

Assumptions

- Mass market by 2020
- Charging occurs when cars park
- No change in activity and travel patterns

Daily travel – Charging infrastructure: Methodology

Assumptions

- Mass market by 2020
- Charging occurs when cars park
- No change in activity and travel patterns

Results: Occupancy of charging infrastructure by EVs throughout the week

Results: Occupancy of charging infrastructure by EVs throughout the week – <u>absent home charging</u>

Scenario comparison: Reference scenario and sensitivity analysis

Number of charging points (values in 1,000)

Speed	Location	Reference Scenario	667,000 BEVs 333,000 PHEVs	Charging at home & work	Range +50%: BEV 300 km PHEV 60 km
Normal	Semi-public	22	14	13	17
Normal	Public	14	9	69	12
Fast	Daily travel	2	4	1	1
Fast	Long-distance travel	3	5	3	2

Karlsruhe Institute of Technology Institute for Transport Studies Tamer.Soylu@kit.de

German Aerospace Center Institute of Transport Research John.Anderson@dlr.de