

Autonomous taxicabs in Berlin – a spatiotemporal analysis of service performance

Joschka Bischoff, M.Sc. Dr.-Ing. Michal Maciejewski

Contents

- Motivation
- Methodology
- Results
- Conclusion

Motivation

- Developments in AV technology will sooner or later lead to new taxi-like services
- Service provision is expected to be very cheap
 0.15 US\$ / mile?
- Car usership may decline if AV services are as reliable as car trips

"In less than 20 years, owning a car will be like owning a horse" (Elon Musk)

\rightarrow A significantly lower fleet size may be required to serve travel demand

Motivation

- How many vehicles does it take to cope for the demand handled by cars in Berlin?
- How well will such an AT service perform?
- How do additional empty rides affect service?

Methodology: Model

- MATSim is used as the simulation software
 - Simulation of agents along their daily routines during multiple iterations using multiple travel modes
 - Allows fast simulation of millions of agents

The current MATSim Berlin model:

The Berlin scenario

Hourly demand for AT trips over the day

Spatial distribution of AT trips

Trip start locations

Trip end locations

Simulation of dynamic transport services in MATSim

Objectives

- minimize fleet size
- minimize wait time
- minimize empty-to-total drive time ratio

Constraints

- immediate requests
- destinations unknown in advance
- online vehicle monitoring, but no diversion
- vehicles move according to the current travel times
- pickups and drop-offs take time
- Initial vehicle distribution: According to population density

Dispatching strategies

Rules

- taxi call dispatch the nearest idle taxi OR queue request
- drop-off wait OR serve the longest waiting request

Dispatching strategies

Rules

- taxi call dispatch the nearest idle taxi OR queue request
- drop-off wait OR serve the <u>nearest</u> waiting request
- = demand-supply balancing

Results

- Initially, between 60.000 and 250.000 ATs were used to serve the demand
- 100.000 vehicles provide a sufficiently good service
 - Average waiting times of around 5 minutes during peaks, less than 3 minutes in average
 - Overall daily driving distance per vehicle: 274 km
 - 239 km with passenger
 - 35 km empty (13 %)
 - Average trip length: 9,4 km

Universität

Berlin

The effect on traffic

- 13 % of all mileage is empty and did not exist beforehand
- Effects on congestion are hard to measure:
 - Increased flow of AVs could compensate for this
 - \rightarrow Further research on congestion effects
- Extra mileage is not evenly spread over the city
 - In the city centre, pick up trips are generally short (or even non existent)
 - Demand from outskirts attracts longer pickup trips

The effect on traffic

The effect on traffic

Generalisation

- Based on today's travel behaviour and the given constraints, 100,000 ATs could replace inner city car traffic in Berlin
- Waiting times seem acceptable, so does fleet occupancy
 - In terms of profit: City centre more promising, pick up trips are significantly shorter
- Fleet is mainly occupied during peak hours
 - ATs are occupied for roughly 7.5 hours a day, so a majority of the fleet could run different services during off-peak times

Further steps

- The influence of other modes
 - Not only car users are expected to use AT services
 - The attractiveness of public transport could decline
 - A combination of AT and PT services
 - Requires a behavioral model for mode choice of a currently non-existing mode
- Better flow performance of AVs
 - Can be assessed in MATSim
- Shared rides
 - Assumes a willingness-to-share

Thank you!

