The impact of product failure on innovation diffusion: The example of the cargo bike as alternative vehicle for urban transport

Heinrich, Lea (Zeppelin University); Schulz, Wolfgang H. (Zeppelin University); Geis, Isabella (Fraunhofer-Institute for Material Flow and Logistics IML)

THEORY

This study explores the technological perspective of product adoption by enhancing the process of innovation diffusion picking up the case of product failure of electronic cargo bicycles.

Empirical case examination

- Business owners testing electric cargo bike prototypes for commercial urban transport
- Technical deficit detection
- Crucial impacts on vehicle usability
- Benefits ascribed to vehicle not viable

Key Objectives

- Identifying the importance of innovation performance
- Influences of technical deficit reports on the adoption decision and industry performance
- Importance of early adopters as gatekeepers and diffusion leverage potentials
- Adoption and rejection factor impacts

EVALUATION SCHEME

<table>
<thead>
<tr>
<th>User information</th>
<th>Adoption potential</th>
<th>Usage intensity</th>
<th>Claim intensity</th>
<th>Adoption decision</th>
<th>Major impact factors</th>
<th>Résumé</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Profession</td>
<td>Usage intention</td>
<td>Potential estimation</td>
<td>Resistance likelihood</td>
<td>km/km total</td>
<td>Claim/claim total</td>
</tr>
<tr>
<td>Grocery</td>
<td>customer rental and delivery service</td>
<td>73%</td>
<td>38%</td>
<td>62%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Carpenter</td>
<td>construction site visits, repair service</td>
<td>86%</td>
<td>74%</td>
<td>15%</td>
<td>17%</td>
<td>28%</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>delivery service</td>
<td>86%</td>
<td>37%</td>
<td>23%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Shopping mall</td>
<td>sharing system</td>
<td>77%</td>
<td>53%</td>
<td>54%</td>
<td>1%</td>
<td>11%</td>
</tr>
<tr>
<td>Electrician</td>
<td>construction site visits, repair service</td>
<td>82%</td>
<td>44%</td>
<td>69%</td>
<td>10%</td>
<td>14%</td>
</tr>
<tr>
<td>Electronic devices retail</td>
<td>customer service</td>
<td>82%</td>
<td>83%</td>
<td>38%</td>
<td>49%</td>
<td>26%</td>
</tr>
<tr>
<td>Florist</td>
<td>delivery service / gardening service</td>
<td>86%</td>
<td>58%</td>
<td>69%</td>
<td>15%</td>
<td>12%</td>
</tr>
<tr>
<td>Bio grocery</td>
<td>delivery service</td>
<td>82%</td>
<td>61%</td>
<td>62%</td>
<td>3%</td>
<td>6%</td>
</tr>
</tbody>
</table>

MAJOR FINDINGS

- Identification of the decisive impact factors and the proven acceptance once the barriers were overcome
- Poor product quality and technical deficits related to purchase price and future investments lead to total rejection of the specific cargo bike model
- Adopters are critical users that are ambitious to support product refinement: high prototype potential, low adoption resistance likelihood, high claim intensity, high usage intensity
- Rejecters are likely to be indifferent: low prototype potential, high/medium resistance likelihood, low claim intensity, low usage intensity
- Prototype adoption decision mainly based on low purchase price (90% discount on list price)
- “Heavy User” adopters want to act as role models that share their experience
- All users stated that the impacts of technical deficits should be considered by the industry, network enforcement would be highly appreciated

REFERENCES