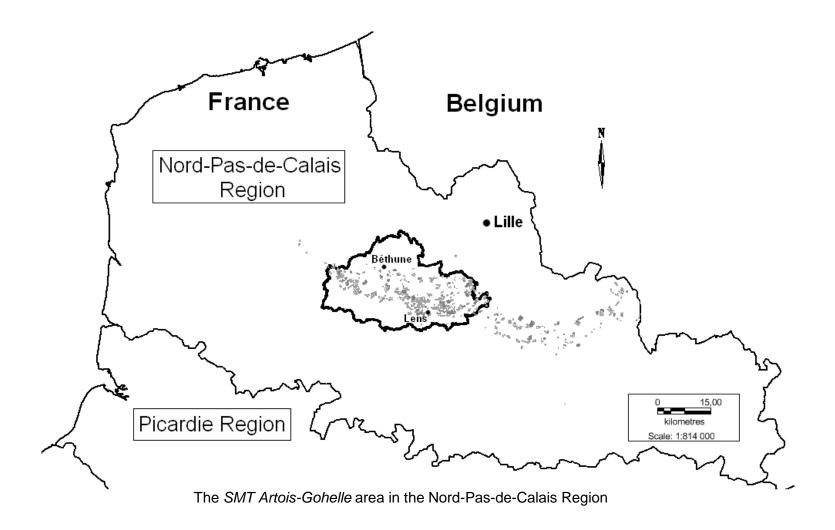
Transportation demand management in a deprived territory: A case study in the North of France

Hakim Hammadou and Aurélie Mahieux

mobil. TUM 2014 – May 20th, 2014


Outline

- 1) Aim of the study
- 2) Methodology
- 3) Available Data
- 4) Analysis of the results
- 5) Conclusions

1) Aim of the study

- Analysis of the transport demand in the ex coal-mining area of the Pas-de-Calais area in the North of France
 - => Is there potential for up scaling public transport services to decrease the share of private car? If so, which strategy to implement?
 - Construction and analysis of the estimated parameters of a modal choice model
 - Simulation of an improvement on the transport network
 - Analysis of the induced modal shifts
- Particular context:
 - Deprived area
 - Private car is the dominant transport mode for commuting (around 70%)
 - Low share of public transport (3%)
 - Urban structure resulting from the mining history which influences mobility behaviors
 - Regeneration strategy focusing on urban projects and a new public transport infrastructure e.g. a Bus with a High Level of Service (BHLS)

1) Aim of the study

1) Aim of the study

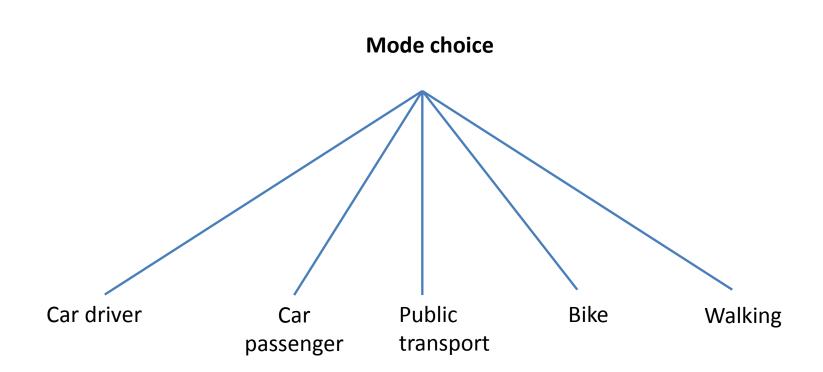
Literature overview

• Determinants of modal choice and travel behaviours

- (De Witte et al., 2013): socioeconomic variables, spatial indicators and journey characteristic indicators are the key determinants
- (Meurs and Haaijer, 2001): land-use environment influences both mobility behavior and mode choice

• Determinants of public transport demand

- (Paulley et al., 2006): fares, quality of service and car ownership strongly influence public transport demand
- (Ubillos and Sainz, 2004): for university students in Spain, more frequent underground and train services, and lower fares for bus should attract new public transport users
- Impacts of network improvement or a new transport infrastructure on modal choice
 - (Hensher and Rose, 2007): modal choice in Sydney for commuter and noncommuter to assess different public infrastructure alternative projects
 - (Shen et al., 2009): study how environmental deterioration and network improvement should have an impact on modal choice

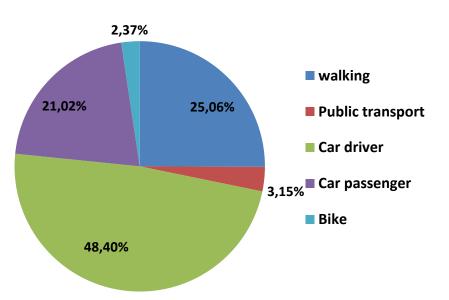

2) Methodology Theoretical framework

- Mode choice modeling is used to analyze transport demand on disaggregated data.
 - Based on the discrete choice theory (Mac Fadden, 1974) (Ben-Akiva and Lerman, 1985)
 - Assumes the existence of a random utility function

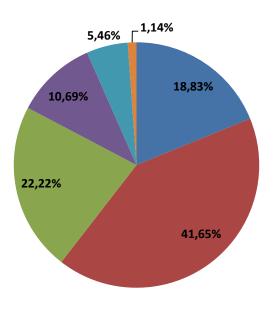
+

- Individuals maximize this random utility function
- For the same given choice, two individuals may have different preferences
- Taste difference is found in the error term
- Choice of the distribution of the residuals leads to two sort of models: a probit model in the case of a normal distribution or a logit model in the case of a Gumbel distribution

2) Methodology Structure of the multinomial logit tree

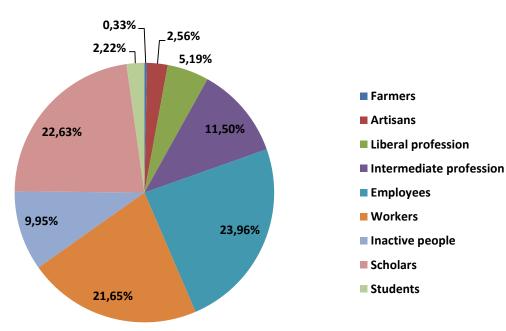


3) Available data


Presentation of the dlatabase

- Two Household Travel Surveys (HTS):
 - Béthune-Bruay-Noeux in 2005
 - Lens-Liévin-Hénin-Carvin in 2006
 - Representative sample of 15,628 trips within the whole studied urban transport perimeter on 1,195 zones
- These surveys are based on revealed preferences
 - Socioeconomic characteristics of travelers
 - Characteristics of observed trips
 - For the other alternative modes, trips are reconstructed with some GIS softwares
 - Location of trips
 - Land use occupation from the SIGALE[®] base from the Nord-Pas-de-Calais Region level to our scale of investigation

3) Available data Descriptive statistics of the sample


Mode split

Income distribution

Less than 10 000€
Between 10 and 20 000€
Between 20 and 30 000€
Between 30 and 40 000€
Between 40 and 60 000€

3) Available data Descriptive statistics of the sample

Occupation

4) Analysis of the results Multinomial logit regression results

Variables	Walk		Public tran	sport	Car driv	er	Bike		
Variables	Coefficient	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)	
Age	0,0118 ***	2,85	-0,019 *	-1,86	0,00758 ***	2,79	0,0324 ***	3,17	
Male	1,18 ***	12,04	0,107	0,51	1,25 ***	16,03	4,09 * * *	16,82	
Travel cost			-6 ***	-21,31	-1,13 ***	-10,79			
In-vehicle travel time	-0,18 ***	-48	-0,0589 ***	-16,59	-0,115 ***	-30,44	-0,276 ***	-24,47	
Parking time					8,65	0,35			
Walking time to and from stops			-0,0426 ***	-14,36					
Occupation (ref. employers)									
Pupils	-0,918 ***	-4,7	-2,48 ***	-4,73	-2,88 ***	-13,55	-2,91 ***	-6,31	
Students	0,291	0,81	-2,53 ***	-3,08	-0,526 ***	-2,7	-1,04	-1,06	
Intermediate profession	0,265	1,41	-0,887	-1,39	0,288 ***	2,52	-0,118	-0,27	
Liberal profession	1,35 ***	5,39	-5,28 ***	-3,84	0,546 ***	2,93	-4,63 ***	-4,76	
Workers	-0,483 ***	-3,24	-0,901 **	-2,33	-0,395 ***	-4,26	-0,635 *	-1,89	
Inactive people	-0,496 ***	-2,91	-1,42 ***	-3,01	-1,21 ***	-11,85	0,273	0,65	

4) Analysis of the results Multinomial logit regression results

Variables	Walk		Public tran	sport	Car driv	/er	Bike		
Valiables	Coefficient	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)	
Travel motive (ref. recreational purpose)									
Work purpose	0,761 ***	4,01	2,54 ***	6,38	0,67 ***	5,88	2,21 ***	5,63	
School purpose	0,855 ***	5,65	3,15 ***	10,6	-0,743 **	-2,34	0,164	0,46	
Shopping purpose	-0,229 *	-1,89	0,227	0,62	-0,0898	-1,09	1,22 ***	4,35	
Household composition (ref. single person)									
Couple without children	-0,63 ***	-3,14	-0,761 *	-1,66	-1,34 ***	-9,09	-1,99 ***	-4,19	
Couple with 1 or 2 children	-0,361 *	-1,71	-0,64	-1,45	-0,634 ***	-4,12	-1,26 ***	-2,82	
Large family	-0,0228	-0,1	-0,317	-0,68	-0,367 **	-2,18	-3,18 ***	-6,46	
Lone parents with 1 or 2 children	-0,125	-0,52	-3,39 ***	-6,37	0,206	1,1	-1,06 **	-1,92	
Lone parents with more than 2 children	0,485	1,6	1,32 ***	2,55	0,594 **	2,05	0,232	0,37	
Annual income (ref. more than 40 000€)									
Less than 10 000€	-0,262 *	-1,66	0,763 ***	2,53	-0,278 **	-2,3	-1,57 ***	-4,12	
Between 10 and 20 000€	0,34 ***	2,93	-0,1	-0,38	-0,116	-1,38	0,755 ***	2,77	
Between 20 and 30 000€	-0,108	-0,79	0,967 ***	3,41	-0,0194	-0,21	-0,378	-1,16	
Between 30 and 40 000€	-0,0668	-0,38	-0,0304	-0,07	0,00614	0,05	-1,18 **	-2,13	

4) Analysis of the results Multinomial logit regression results

Variables	Walk		Public transport		Car driver		Bike		
Valiables	Coefficient	t	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)	Coefficient	(t-stat)
Accessibility									
Bus frequency (origin)	-0,00667	***	- <u>7,25</u>	0,00122	0,73	-0,00237 ***	<u>-1,13</u>	-0,0138 ***	-7,93
Number of bus stops at 5 minutes (destination)	-0,443	***	-7,52	1,21 ***	10,71	0,149 ***	3,59	0,281 **	2,19
Number of bus stops at 5 minutes (origin)	-0,259	***	-4,6	-0,0215	-0,18	-0,0612	-1,52	-0,269 **	-2,2
Land-use characteristics (ref. residential area)									
Dense urban area	-0,569	**	-2,28	0,363	0,56	-0,184	-1	2,1 ***	3,41
Commercial area	-1,83		-1,57	-0,159	-0,09	-0,709 **	-1,93	8,79 ***	4,83
School / university area	-0,428		-0,92	3,72 ***	5,98	1,9 ***	4,08	5,35 ***	7,01
Industrial area	-1,01	*	-1,91	-0,409	-0,39	-0,0989	-0,36	1,57 *	1,71
Constant	4,38	***	12,75	-1,42 *	-1,66	1,43 ***	6,41	-3,95 ***	-4,75

Final log-likelihood = -9083.607 McFadden's Pseudo-R² = 0,541 % prévisions correctes = 83%

4) Analysis of the results Elasticities

Elasticities	Walking	Car	Public transport	Bike
Price elasticity	-	-0,22	-5,3	-
Time elasticity	-9,9	-0,84	-1,58	-11,74
Frequency elasticity	-	-	0,05	-

Price, time and frequency elasticies

- People are more sensible to the time spent in public transport than in car.
 => Confirms the lack of public transport mobility culture in this territory.
- People are more sensible to the cost of public transport than to the frequency or the time spent in a bus

=> Preferable to implement policies which have an impact on the cost of the public transport use. Public transport fares seem to be a key variable.

4) Analysis of the results Simulations

Transport modes	Initial modal split	Free public transport (1)	Higher frequency of public transport (2)	Higher frequency of public transport (3)	(1) + (3)	Longer car travel times (4)	(3) + (4)	(1) + (3) + (4)
Walking 24.00%	24 0.0%	19.98%	23.84%	23.41%	19.17%	24.82%	24.34%	19.82%
	24.00%	(-0.16)	(+0.16)	(-0.59)	(-4.83)	(+0.82)	(+0.34)	(-4.18)
Public transport	2.83%	14.42%	2.89%	2.89%	15.27%	2.98%	3.06%	16.72%
		(+11.59)	(+0.06)	(+0.06)	(+12.44)	(+0.15)	(+0.23)	(+13.89)
Car driver 56.17%	56 17%	52.61%	56.25%	56.25%	52.38%	55.45%	55.48%	50.81%
	50.17%	(-3.56)	(+0.08)	(+0.08)	(-3.79)	(-0.72)	(-0.69)	(-5.36%)
Car passenger	15.06%	11.41%	15.46%	15.46%	11.56%	14.65%	14.99%	10.92%
		(-3.65)	(+0.40)	(+0.40)	(-3.50)	(-0.41)	(-0.07)	(-4.14)
Bike	1.95%	1.58%	2.00%	2.00%	1.63%	2.10%	2.13%	1.73%
		(-0.37)	(+0.05)	(+0.05)	(+0.32)	(+0.15)	(+0.18)	(-0.25)

Simulation results of different scenarios

- (1) + (3): strong transport policy which encourage the public transport use
- (1) + (3) + (4): combination of one policy in favour of public transit ((1)+(3)) and one discouraging the use of the car (4)
- (3) + (4): BHLS scenario

5) Conclusions

Main findings

- Walking time to and from bus stops has a positive impact on public transport demand.
- Frequency of bus has no influence on public transport demand but has a negative influence for all the other transport modes.
- Parking time has no influence on demand for car.
- People are less sensible to change in cost of using car or car travel times than to change in bus ticket price or bus travel times.

=> Real oppotunities to increase public transport share

=> Changes have to be extreme to lead to a significant impact on car demand.

5) Conclusions Main findings

• More frequencies and faster travel times will have little effect on public transport demand.

• Strong inertia in car driver use

 Conventional economic instruments (travel times, travel cost) are not sufficient

5) Conclusions

Research agenda

- Robustness check on the model by using a nested logit estimation
 - Nested logit is expected to better reproduced travel behaviors by introducing correlation among alternatives
- Comparison of a similar model on a different territory in the same Region

Thank you for your attention

aurelie.mahieux@ed.univ-lille1.fr EQUIPPE, University of Lille 1