

UNIVERSITÀ DELLA CALABRIA

LABORATOIRE VILLE, MOBILITÉ, TRANSPORT

> Sous la co-tutelle de : ÉCOLE DES PONTS PARISTECH IFSTTAR UPEM • UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE





mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

How to build an alternative to sprawl and autocentric development model through a TOD scenario for the Nord-Pas-de-Calais region? Lessons from an integrated transportation-land use modelling

Fausto Lo Feudo PhD candidate in transport and urban planning

fausto.lofeudo@ifsttar.fr

introduction

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

questions and objectives of research

land use and transport integration

Transit Oriented Development

Land Use and Transport Integrated modelling

**Tranus model for Nord Pas de Calais (France)** 

# questions and objectives



### land use and transport interaction

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



cumulative and synergic effect of interaction factors (Litman, 2012) various temporalities (Wegener, 1999)

### **Transit Oriented Development**

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

• high density

1:150000

- functional mixing
- priority to active mobility & PT

Regional

Network

• urban design quality



### **Transit Oriented Development**

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

from a car oriented paradigm to...

- physically transit oriented and not just adjacent (Cervero, 2012)
- multi-modal and polycentric development (Litman, 2012)
- tool to promote rail use (Nuzzolo 2010; Leysens, L'Hostis, 2011)
- **TOD** to reinforce node and place function (Bertolini, 1999)

obstacles:

sharing and acceptance of TOD principles (concept interpretation) different solutions for different contexts (transferability & adaptation) institutional and operational barriers (coordination) time factor and gentrification (equity)



# LUTI modelling

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

evaluate applicability and effects of a TOD regional plan in NPDC



a land use and transport integrated model is a theorized and formalized representation to analyze a territory in its spatial, economic and social aspects. (Laurent, 2012)



# LUTI modelling

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

#### classic models: exogenous land use data



#### LUTI models: land use data generated by the model



# tranus

#### integration of various theoretical approaches:

spatial macro economics (*Von Thunen*); gravity and entropy models (*Lowry*); input-output model (*Leontief*); random utility model (*McFadden*); path choice algorithm (*Dijkstra*)

#### aggregated model - based on equilibrium between supply and demand



## Nord Pas de Calais tranus model

### model hypothesis inspired by regional planning strategies

promote urban densification near transit and rail network; improve territorial attractiveness; make the regional a railway European hub; promote transit use

base scenario: 2009 (national census data)

time horizons: 2013 – 2017 – 2021 - 2025

#### scenario A «Trend Scenario»

### scenario B « Regional TOD Plan »:

progressive densification in selected rail corridors and nodes (TOD zones) improvement of PT frequencies: + 10% at 2017 and 2021; + 20% at 2025)

### **scenario C** « Regional TOD Plan + transit use incentives »:

progressive densification near selected rail corridors and nodes (TOD zones) improvement of PT frequencies: + 20% at 2017 and 2021; + 30% at 2025) *Integrated tariff (bus and rail) Introduction of a tool for highways (0.08 €/km)* 

# Nord Pas de Calais Tranus model

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

# Zoning

| type                                                    | nr. of<br>zones |
|---------------------------------------------------------|-----------------|
| Main cities                                             | 16              |
| Municipalities of Lille<br>agglomeration (LMCU)         | 24              |
| TOD zones                                               | 21              |
| Rest of regional<br>territories<br>(employement zones ) | 15              |



# **TOD** potential rail corridors





# structure of the model

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



#### Land Use types

available land monthly rental price (par type and zone)



# structure of the model



# hypothesis TOD scenario

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

rail station (Saint Armand les Eaux)

## **Progressive densification**





15% in

2021

10% in

2021

5% in

2017

Empty land

5% in

2017

density TOD land = + 10/15%

higher than urban mixed land

## land use results - households

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



Scale 1:750000

## land use results - jobs



## land use results – land prices

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



Scale 1:750000

### land use results – land consumption





### transport results – modal share

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



Rush hour Simulation 7h – 9h Home – Work Home – Service



### transport results – modal share

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014





**Evolution number of trips by bus** 

2025 A 2025 B 2025 C 236% 161% 97% 31% 34% 47% 58% 47% 47% 58% 47% 47% 58% 47% 0 47% 58% CITIES

### transport results – TOD zones





## transport results – level of service

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014



#### 2025 scenario C



| 🗆 A   | Level A |
|-------|---------|
| 🗖 🗆 В | Level B |
| = 🗆 C | Level C |
| 🔳 🗆 D | Level D |
| 🗖 🗆 E | Level E |
| 📕 🗌 F | Level F |
| 🗖 🗆 G | Level G |
| н 🗆 н | Level H |

### transport results – level of service



## conclusions

#### about results:

- show an increase of sprawl without specific contrasting policies
- TOD regional plan (scenario B and C) induces a limitation of sprawl and of car use
- TOD effects increase if associated with policies that discourage car use and improve transit performance (scenario C)
- land prices evolution confirms TOD capacity of value capture
- TOD effects are more evident in zones with a basic economic and productive dynamism with significant initial land and transport demand (rail corridors *Lille Douai*; *Lille Lens Bethune*)

### about modelling:

- complexity about the *multi* scalar and regional approach (different densities and land uses for different territorial scales)
- complexity about modelling TOD
- Limits related to aggregated zoning (good for global analysis, less for punctual analysis)
- calibration and output analysis (need of time and of a multidisciplinary approach)
- Tranus confirms is consistence in *multi scalar* and regional modelling

# Sustainable Mobility in Metropolitan Regions

# thanks a lot for your attention!

Contact: fausto.lofeudo@ifsttar.fr

May 19-20, 2014 Oskar von Miller Forum Munich, Germany

# Nord Pas de Calais Tranus model





# Nord Pas de Calais Tranus model

mobil.TUM 2014 Sustainable Mobility in Metropolitan Regions Munich, Germany - May 19-20, 2014

| <b>=</b> <del>़ 7</del> 1 | CAMBRAI LIGNE A      |
|---------------------------|----------------------|
| = 🔐 72                    | CAMBRAI LIGNE B/ P   |
| <b>= </b> 73              | CAMBRAI LIGNE E/AR   |
| = 飛 74                    | CAMBRAI LIGNE D      |
| = 🔐 75                    | CAMBRAI LIGNE C      |
| = 🔐 76                    | TGV 1-1/1-3          |
| = 🔐 77                    | TGV 1-2              |
| <b>=</b> 🔫 79             | TGV 1-4/1-5/1-6      |
| = 🔐 82                    | Eurostar 1           |
| <b>= </b> 83              | TGV 2 / Eurostar 2   |
| = 🔐 85                    | _TER-E-1             |
| = 🔐 86                    | _TER-3               |
| 🔳 📆 92                    | _:TGV AUT-1          |
| = 🔐 93                    | TER-GV 2             |
| 🔳 🚟 94                    | TGV 6-7-1            |
| = 🚟 95                    | TGV 6-7-2            |
| 🔳 🚟 96                    | TGV 8-1 /TER-GV 8-1  |
| 📕 🚟 97                    | TGV 8-2              |
| = 🚟 99                    | TGV 11-12-1          |
| 📕 🔐 100                   | TGV 11-12-2 / TER-GV |
| 🗖 🚟 101                   | TGV 11-12-3 / TER-GV |
| <b>= 🔐</b> 104            | _TER 2/19/22         |
| <b>=</b> 🙀 105            | _TER 2-1             |
| 🗖 🔐 106                   | _TER 2-2             |
| 🗖 🚟 107                   | _TER 2-3             |
| 🔳 🔐 114                   | _TER 4               |
| <b>115</b>                | _TER 5               |
| 116                       | _TER 6-7-1           |
| <b>118</b>                | _TER 6-7-3           |
| <b>119</b>                | _TER6-7-27 8-1       |
| <b>1</b> 20               | _TER 8-2/12          |
| <b>- 37</b> 121           | _TER 8-3/12          |
| - 500 122                 | _IER 9               |
| 125                       | _IER II              |
| = <del>372</del> 128      | _IER 13              |
| = <del>77</del> 129       | _IER 14-1/2/3        |
| <b>a m</b> 132            | _IER 10-1            |
| = <del>576</del> 133      | _IED 10-2            |
| = <del>516</del> 134      | _TER 10-3723         |
| = 🚟 135                   | TEB 16/17/18         |
| = 🚟 130                   | TEB 16/17/19/20      |
| = 🚌 137                   | TEB 17.1             |
| - m 133                   | TEB 18               |
| = 🔤 143                   | TEB 19/21            |
| = 310 143                 | TFB 20               |
| <b>145</b>                | TEB 21               |
|                           |                      |

Name

