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BMW Field Trails for e-Mobility 
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BMW Field Trails for e-Mobility 



Automatic Datamining 

a set of analytical apps is provided for in depth analysis 

TeleServices are implemented as a 

communication channel To provide details of 

usage 
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Aggregated data is fed to the drivers via the ActiveE 

electronaut homepage 
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Predicted ≠ Actual 

battery use is not constant 
and it’s difficult to predict 
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Predicted ≠ Actual 

battery use is not constant 
and it’s difficult to predict 
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Stalled Out on Tesla’s Electric Highway, 2/8/2013 

-J. Broder 

“Nearing New York, I made the first of several calls to 
Tesla officials about my creeping range anxiety.” 

~15 - 35% Error in DTE 
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Survey of EV users: A more accurate Distance to 
Empty estimate may be more valuable than increasing 
the size of the battery pack 
Franke, et al, August 2011  

Range Anxiety 



Can we use the ActiveE driving data to better 
understand why Distance to Empty is so 
difficult to predict? 
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Introduction to DTE Estimation 

 The objective is to estimate the future energy use 
  
 Conventional DTE algorithms assume past ≈ future 

 
 Real world data: Cannot always rely solely on past 

driving data to estimate the future 
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1st Important Concept: 

 The objective of a DTE algorithm is to estimate the 
future average energy use  
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2nd Important Concept: 

 Conventional methods only use past driving information to estimate  
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Introduction to DTE Estimation 

 The objective is to estimate the future energy use 
  
 Conventional DTE algorithms assume past ≈ future 

 
 Real world data: Cannot always rely solely on past 

driving data to estimate the future 
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Real world insight: there’s a high probability 
that average energy use (Wh/km) will change 
by 30% or more between the past and future 

Conventional 
Approach 
Assumes Dirac 
Delta function 
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Simulation: when energy consumption changes 
by 30% mid-drive, conventional methods yield 
DTE estimation error of ~17-30% 
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ActiveE dataset shows that auxiliary energy use 
is the largest source of variation in energy use 
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ActiveE dataset confirms that auxiliary loads 
are significant 
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Introduction to DTE Estimation 

 The objective is to estimate the future energy use 
  
 Conventional DTE algorithms assume past ≈ future 

 
 Real world data: Cannot always rely solely on past 

driving data to estimate the future 
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0:03 Remaining 

Recharge 
Immediately 
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Thank you very much for your attention! 

Any questions? 


