

ANALYZING THE ENERGY CONSUMPTION OF THE BMW ACTIVEE FIELD TRIAL VEHICLES WITH APPLICATION TO DISTANCE TO EMPTY ALGORITHMS

LENNON RODGERS, MIT STEPHEN ZOEPF, MIT JOHANN PRENNINGER, BMW

mobil.TUM 2014

BMW Field Trails for e-Mobility

BMW Field Trails for e-Mobility

TeleServices are implemented as a communication channel To provide details of usage

a set of analytical apps is provided for in depth analysis

ActiveE-Analytics.qvw Last Update: 2014-05-12 12:32

ActiveE-CHARGING_ANALYTICS.qvw Last Update: 2014-05-12 12:30 view details

E82E_RG.qvw Last Update: 2014-05-15 06:51 Next Update: 2014-05-16 06:45 view details

Last Update: 2014-05-12 12:38 view details

Aggregated data is fed to the drivers via the ActiveE electronaut homepage

1:00 Remaining

0:03 Remaining

Recharge Immediately

Predicted ≠ Actual

battery use is not constant and it's difficult to predict

Predicted ≠ Actual

battery use is not constant and it's difficult to predict

The New York Times

Stalled Out on Tesla's Electric Highway, 2/8/2013

"Nearing New York, I made the first of several calls to Tesla officials about my creeping range anxiety."

-J. Broder

~15 - 35% Error in *D*_{TE}

Range Anxiety

Survey of EV users: A more accurate Distance to Empty estimate may be more valuable than increasing the size of the battery pack

Franke, et al, August 2011

Can we use the ActiveE driving data to better understand why Distance to Empty is so difficult to predict?

Introduction to D_{TE} Estimation

□ The objective is to estimate the **future** energy use

- □ Conventional D_{TE} algorithms assume **past** ≈ **future**
- Real world data: cannot always rely solely on past driving data to estimate the future

2st hnppotaant Cookepps:

The objective of a D_{TE} algorithm is to estimate the future average energy use

2nd Important Concept:

 \Box Conventional methods only use past driving information to estimate \overline{p}_f

Introduction to D_{TE} Estimation

The objective is to estimate the **future** energy use

Conventional D_{TE} algorithms assume **past** \approx **future**

Real world data: cannot always rely solely on past driving data to estimate the future Real world insight: there's a high probability that average energy use (Wh/km) will change by 30% or more between the past and future

Simulation: when energy consumption changes by 30% mid-drive, conventional methods yield D_{TE} estimation error of ~17-30%

ActiveE dataset shows that auxiliary energy use is the largest source of variation in energy use

ActiveE dataset confirms that auxiliary loads are significant

Introduction to D_{TE} Estimation

The objective is to estimate the **future** energy use

Conventional D_{TE} algorithms assume **past** \approx **future**

Real world data: cannot always rely solely on past driving data to estimate the future

0:03 Remaining

Recharge Immediately

Thank you very much for your attention! Any questions?

