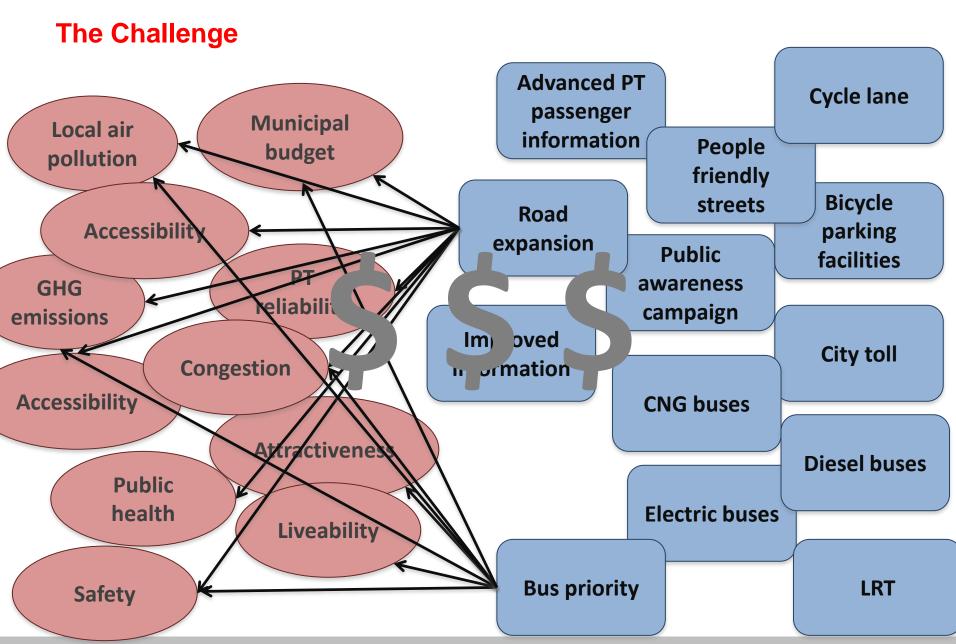


Need for a holistic assessment of urban mobility measures

- Review of existing methods and design of a simplified approach -

Hanna Hüging (presenting)
Co-authors: Kain Glensor and Oliver Lah
Wuppertal Institute for Climate, Environment and Energy


mobil.TUM 2014
International Scientific Conference on Mobility and Transport
Sustainable Mobility in Metropolitan Regions

Assessment urban mobility projects

- Why do cities need a holistic approach for (ex-ante) assessment?
- What is the current practice?
- Which measures do cities need to assess?
- How can be done?

do cities need a holistic approach for (ex-ante) assessment?

WHAT

is the current practice?

Existing methods for transport project appraisal (from a city perspective)

We don't have a standard appraisal method for transport projects.

Cost-benefit analysis (CBA)

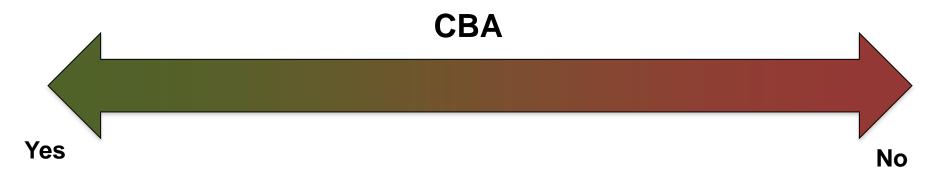
- Highlights economic efficiency
- Extensive data needs
- Difficulties in monetization
- Dominance of travel time savings

Multi-criteria analysis (MCA)

- Applicable to soft measures
- Allows to include qualitative impacts

The major challenge will be to monetise qualitative externalities and not-clear impacts.

The major challenge is data


A regular CBA usually ignores advanced benefits to a measure.

Financial viability checks are conducted for important projects but no CBAs.

WHICH

measures do cities need to assess?

Sustainable urban transport measures

Congestion charge:

- ■Transek (2006), Eliasson (2009)
- → Stockholm
- ■Prud'homme and Bocarejo (2005), Transport for London (2007),
- → London
- Rotaris et al.(2010) → Milan

Cycling infrastructure:

- ■Sælensminde (2004) → Norway
- •Gotschi (2011)
- → Portland
- Guo andGandavarapu(2010) → DaneCounty

Bus priority:

• Gardner et al. (2009)

People friendly streets:

?

HOW

can it be done (better)?

The proposed approach

- Simplified method based on MCA and optional CBA
- Steps:
 - 1. Describe project and alternatives
 - 2. Identify effects and indicators
 - 3. Impact assessment
 - 4. Normalisation
 - 5. Criterion weighting
 - 6. Visualisation and interpretation
 - 7. Sensitivity analysis
 - 8. Communicate results

Effects	Impact* (assessment duration, 14y)			
Lifects	Diesel buses	CNG buses		
Bus purchase	-€6.22m	-€7.71m		
Refilling station	0	-€2.01m		
Fuel costs	-€4.39m	-€2.39m		
Maintenance	-€2.43m	-€3.56m		
NOx emissions	706t	712t		
CO emission	296t	74t		
HC emissions	93t	36t		
PM ₁₀ emissions	7t	0.6 t		
CO ₂ emissions	60.2kt	57.6kt		
CH ₄ emissions	2.33t	12t		
N ₂ O emissions	0.04t	1.35t		
Noise (qualitative)	-6	-2		
External city image (ql)	1	+3		
PT user comfort (ql)	-4	-1		
PT non-user comfort (ql)	-5	-1		

Normalisation

- Translate the performance figures to a comparable scale
- Maximum score approach:

Score C1(A) =
$$\frac{x_{C1(A)}}{|x_{C1(mox)}|} \times F_{scale}$$

Example:

	Impa	acts	Normalised score		
	Diesel	CNG	Diesel	CNG	
Investment	- €6.22m	-€9.72m	-6,4	-10	
Operation/Maintenance	- €6.82m	- €5.95m	-10	-8.72	
CO ₂ emissions	-60.2kt	-57.6kt	-10	-9.6	
Passenger comfort	-4	-1	-10	-2.5	

Example - Results

	Impacts		СВА	Normalised score		Waighta	Weighted normalised scores	
	Diesel (BAU)	CNG		Diesel	CNG	- Weights -	Diesel	CNG
Monetary								
Investment	- €6.22m	-€9.72m	-€3.5m	-6,4	-10	26	-166.4	-260
Maintenance	-€2.4m	-€3.6m	-€1.1m	-6.8	-10	8	-54.4	-80
Fuel expenditures	-€4.4m	-€2.4m	+€1.9m	-10	-5.4	8	-80	-43.2
GHG emission	-€1.22m	-€1.16m	+€0.06m	-10	-9.6	7	-70	-67.2
Local air pollution	-€5.4m	-€4.6m	+€0.8	-10	-8.4	23	-230	-193.2
Economic results	∑-€19,6m	∑-€21,4m	BCR: 0.63				-600.8	-643.6
Non monetary								
Noise	-6	-2		-10	-3.3	10	-100	-33.3
External city image	1	+3		3.3	10	9	29.7	90
Passenger comfort	-4	-1		-10	-2.5	5	-50	-12.5
PT non-user comfort	-5	-1		-10	-2	4	-40	-8
						Overall scores	-699.5	-607.2

Conclusion

- No standard method for transport project appraisal exists among European cities
- A combined approach for the appraisal of local transport measures:

Needs to

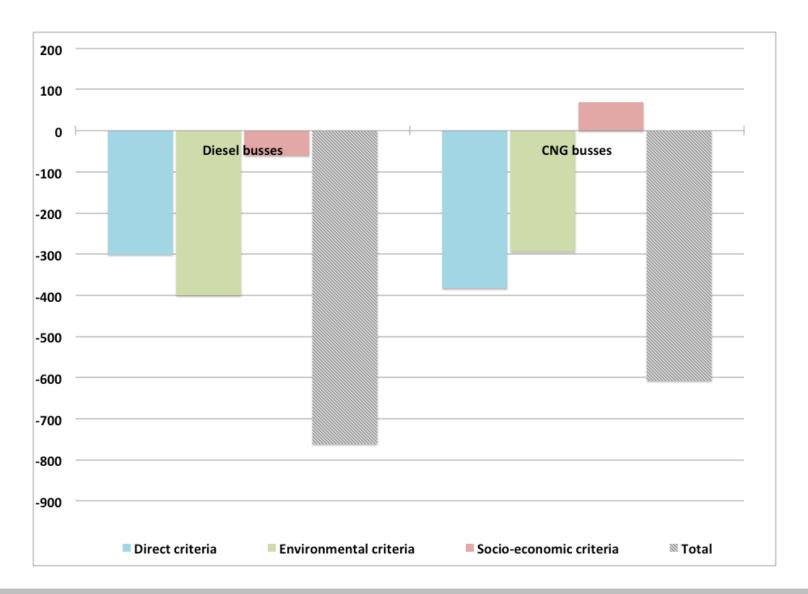
- Reflect different kinds of impacts (holistic approach)
- Applicable to the majority of urban mobility policies/measures
- Able to reflect economic viability esp. of large scale projects (CBA optional!)

Addressed by

- Allows to include quantitative (monetary) and qualitative effects
- Efforts can be adapted to the magnitude of the measure under investigation (in terms of costs)
- An economic assessment can be integrated (supplementary, not replacing holistic results)

→ Further work is required to test the method and its influence in the decision making process

THANK YOU



References (extract)

- Beria, P., Maltese, I., Mariotti, I., 2012. Multicriteria versus Cost Benefit Analysis: a comparative perspective in the assessment of sustainable mobility. Eur. Transp. Res. Rev. 1–16.
- Bristow, A.L., Nellthorp, J., 2000. Transport project appraisal in the European Union. Transp. Policy 7, 51–60.
- Browne, D., Ryan, L., 2011. Comparative analysis of evaluation techniques for transport policies. Environ. Impact Assess. Rev. 31, 226–233. doi:10.1016/j.eiar.2010.11.001
- Eliasson, J., 2009. A cost-benefit analysis of the Stockholm congestion charging system. Transp. Res. Part Policy Pract. 43, 468–480. doi:10.1016/j.tra.2008.11.014
- Gardner, K., D'Souza, C., Hounsell, N., Shestra, B., 2009. Review of Bus Priority at Traffic Signals around the World.
- Gotschi, T., 2011. Costs and benefits of bicycling investments in Portland, Oregon. J. Phys. Act. Health 8, S49–S58.
- Guo, J.Y., Gandavarapu, S., 2010. An economic evaluation of health-promotive built environment changes. Prev. Med. 50, S44–S49. doi:10.1016/j.ypmed.2009.08.019
- Prud'homme, R., Bocarejo, J.P., 2005. The London congestion charge: a tentative economic appraisal. Transp. Policy 12, 279–287. doi:10.1016/j.tranpol.2005.03.001
- Raux, C., Souche, S., Pons, D., 2012. The efficiency of congestion charging: Some lessons from cost–benefit analyses. Res. Transp. Econ. 36, 85–92. doi:10.1016/j.retrec.2012.03.006
- Rotaris, L., Danielis, R., Marcucci, E., Massiani, J., 2010. The urban road pricing scheme to curb pollution in Milan,
 Italy: Description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part Policy Pract. 44,
 359–375. doi:10.1016/j.tra.2010.03.008
- Sælensminde, K., 2004. Cost-benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transp. Res. Part Policy Pract. 38, 593–606. doi:10.1016/j.tra.2004.04.003
- Transek, 2006. Cost-benefit analysis of the Stockholm Trial. www.stockholmsforsoket.se
- Transport for London, 2007. Central London Congestion Charging Scheme: ex-post evaluation of the quantified impacts of the original scheme.
- Tudela, A., Akiki, N., Cisternas, R., 2006. Comparing the output of cost benefit and multi-criteria analysis: An application to urban transport investments. Transp. Res. Part Policy Pract. 40, 414–423.
- Van Herwijnen, M., (undated) Weighted Summation <u>www.ivm.vu.nl/en/Images/MCA2_tcm53-161528.pdf</u> (accessed August 12, 2013)

Example - Results

