Anne-Sophie Fulda, Elise Nimal European Institut For Energie Research # NODE Method for energy balance for a transportation hub and its neighbourhood #### **Table of Content** #### **Context and objectives** #### **Method** **Model requirements** **Dynamic approach** Perimeter **Model architecture** #### **NODE Modules** **Transport** Land use **Energy** #### **Application on Rotonde station (Strasbourg)** First results #### Introduction #### Context - Pressure on the residential market and for service and commercial location: promotion of the public transport via Transport Oriented Development (TOD) - Optimizing transport infrastructure - High energy consumption in intermodal hubs and their immediate neighbourhood - Potential for developing intelligent energy problems (production, distribution) # How to improve energy efficiency in a transport hub? #### **Aims** Bring together different stakeholders: - Urban planners - Transport planners - Energy providers - Distinct points of view generating knowledge for governance - Help decision of different policies ## **Method** ## Method: dynamic approach #### **Technical model** Brotchies: Costs, urban area, transport network (Macro) Figure 6: Multi-scales Sources: Brand-van Tuijn 2001 #### Qualitativ model Van-Tuijn Figure 4: Brotchies' Triangle #### LUTI - Wulfhorst: Sensitivity model SUTRA - Bertolini: « concern synergy model » - Hourglass - Chester ITLU-LC Figure 5: Node description according to influence and quality Sources: Bertolini 2006 / 2009 - The simulation method: system dynamic - > A prospective approach: scenarios #### **Method: Perimeter** #### How to focus on the station and its perimeter? - Trips from and to the station - Trips from and to the neighbourhood - Scale of local electricity system (substation, transformer) # How to take into account the context of the agglomeration? - Distinction by rings with homogeneous urban structure - Supposing homogeneous behaviours within the ring - Generic parameters Strasbourg region and rings ### Method: model architecture ## **NODE** The three modules and their interactions ## **NODE Model: Transport** ## **NODE Model: Transport** #### Generation - Emissions and attractions for one zone - Emissions (parameter from EMD analysis) and attractions (parameter from Bosserhof, 2013) - Input data: - Inhabitants with social distinctions: age and income - > Surface build per activity: working; shopping, leisure and school; university ### **NODE Model: Transport** #### **Modal choice** - Combinations of 2 modes (feeder/main mode or main mode/last km) or unimodal - Utility Functions $$U_n(i) = \alpha + \sum_{i} \beta_i Ti + \sum_{i} \gamma_i Ci$$ - α,β,γ: coefficients - C: cost of the whole trip - T: time of the whole trip - i: each part of a trip Probability (Logit) $$P_n = \frac{e^{U_n}}{\sum_k e^{U_n}}$$ - Time distribution along the day, per quarter - Taking into account public transport frequencies ## **NODE Model: Land Use** #### **NODE Model: Land Use SD** #### Land Use - Evolution of density/share - Relocation of people is the main natural change - Urban projects #### Station use - Dynamism of the station is a urban project (external change) - Impacting the Land Use via the changes on local supply 19.05.2014| NODE #### **NODE Model: Land Use** #### Locations factors for living purposes - Quiet safety - Local supply - Living quality - House comfort - Car accessibility - The cost of land or rent Each distinguished group is associated with a different location factor rank #### Location factors for companies | | Industry | Construction | Business | Transport und | Services | |---|------------------|------------------|------------------|-----------------|------------------| | | | industry | | logistic | | | 1 | Qualification of | Surrounding | Land price and | Employees | Surrounding | | | employees | firms / Image | available area | cost | firms / Image | | 2 | Local taxes | Incentive | Local taxes | Local taxes | Qualification of | | | | | | | employees | | 3 | Energy water | Employees | Qualification of | Infrastructure | Incentive | | | | cost | employees | | | | 4 | Employees | Infrastructures | Employees | Quality of | Employees | | | cost | | cost | services | cost | | 5 | Availability of | Qualification of | Public transport | Availability of | Land price and | | | employees | employees | accessibility | employees | available area | Source: Menzl, 2009 Indicator on location factors (per social group and activity) Logit function for the neighbourhood attractiveness ## **NODE Model: LUTI** ## **NODE Model: Interaction (LUTI)** ### Loops - Land Use: Neighbourghood (long term evolution) / Station (planned evolution project) - Transport modal choice and fleet evolution (transport project) - LUTI (links: accessibility and attractiveness) Preliminary interaction between the modules transport and Land Use ## **NODE Model: LUTI** ## **NODE Model: Energy** #### **Balances** | Perimeter of different energy balances | Final energy balance | Balance of services LCA | | | | |--|--|--|--|---------------------------------------|---| | Objective | Energy management Impact on energy production and distribution | Comparis
on
between
modes | Comparison
between
station
organization | Comparison
between
technologies | Comparison between different urban projects | | Scale | Electricity Grid "Substation", "transformer" | Of the trip | Of the station | Of the neighbourho | Of the neighbourho od | | Time
schedules | Variability 500 500 500 500 500 500 500 5 | For all day, for all week or seasons 25377 1300 130 | | | | ## **NODE Model: Energy** #### Computation # **Application on Rotonde station (Strasbourg)** ## **Application on Rotonde station** Location and urban structure of Cronenbourg Est and the station Rotonde, Strasbourg ## Result: Modal Split # Rotonde modal split (neighbourhood) Modal split (2nd ring) ### Results: station Number of vehicles from and to Rotonde Station (PT + feeder + last km) Passenger per tram at Rotonde Station (boarding and arriving) ## Result CO2 eq. bilance Final energy 81885 kWh # Results: final energy electric grid #### Scenario with 10% electric vehicle Trip from and to Rotonde Station with 10% of electric vehicles Final energy consume of the trip from and to Rotonde Station with 10% of electric vehicles # **Questions?** #### Contact Anne-Sophie Fulda fulda@eifer.org +49 (0)721 - 6105 1454 Elise Nimal nimal@eifer.org +49 (0)721 - 6105 1418